Tuning the Through-Plane Lattice Thermal Conductivity in van der Waals Structures through Rotational (Dis)ordering
Journal article, 2023

It has recently been demonstrated that MoS2 with irregular interlayer rotations can achieve an extreme anisotropy in the lattice thermal conductivity (LTC), which is, for example, of interest for applications in waste heat management in integrated circuits. Here, we show by atomic-scale simulations based on machine-learned potentials that this principle extends to other two-dimensional materials, including C and BN. In all three materials, introducing rotational disorder drives the through-plane LTC to the glass limit, while the in-plane LTC remains almost unchanged compared to those of the ideal bulk materials. We demonstrate that the ultralow through-plane LTC is connected to the collapse of their transverse acoustic modes in the through-plane direction. Furthermore, we find that the twist angle in periodic moiré structures representing rotational order provides an efficient means for tuning the through-plane LTC that operates for all chemistries considered here. The minimal through-plane LTC is obtained for angles between 1 and 4° depending on the material, with the biggest effect in MoS2. The angular dependence is correlated with the degree of stacking disorder in the materials, which in turn is connected to the slip surface. This provides a simple descriptor for predicting the optimal conditions at which the LTC is expected to become minimal.

Molecular dynamics

Atomic-scale modeling

Thermal conductivity

van der Waals materials

Machine-learning potentials

Moire structures

Author

Fredrik Eriksson

Chalmers, Physics, Condensed Matter and Materials Theory

Erik Fransson

Chalmers, Physics, Condensed Matter and Materials Theory

Christopher Linderälv

Chalmers, Physics, Condensed Matter and Materials Theory

Zheyong Fan

Bohai University

Paul Erhart

Chalmers, Physics, Condensed Matter and Materials Theory

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 17 24 25565-25574

Phase behavior and electronic properties of mixed halide perovskites from atomic scale simulations

Swedish Research Council (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Hydrogen trapping by carbides in steel

Swedish Research Council (VR) (2021-05072), 2021-12-01 -- 2025-11-30.

Analysis and Modelling Service for Engineering Materials Studied with Neutrons

Swedish Research Council (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

Subject Categories

Condensed Matter Physics

DOI

10.1021/acsnano.3c09717

PubMed

38063207

More information

Latest update

3/7/2024 9