Phase-locked, pre-amplified optical injection locking at low input powers
Journal article, 2024

Optical injection locking generally occurs when light from a master laser is unidirectionally injected into a slave laser, such that the injected light overcomes spontaneous emission inside the cavity, and forces the slave laser to behave as a frequency copy of the master. Here, we study the limits of stability for optically pre-amplified optical injection locking in the case of large added noise on the input field and in the presence of a phase locked loop which minimizes the frequency offset between master and slave lasers. We present a set of modified rate equations which we use to describe the physics of the system near the limit of stable injection locking, and report on phase slips which occur due to injected noise momentarily destabilizing the system. We then provide experimental evidence to support the behavior seen in simulation, and are able to successfully recover a CW wave at -80 dBm black box input power (-70 dBm for phase slip free operation), providing 20 dBm of output power from the injection locked slave laser.

Author

Connor Skehan

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Magnus Karlsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Peter Andrekson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Optics Express

1094-4087 (ISSN) 10944087 (eISSN)

Vol. 32 2 1956-1965

Noiseless phase-sensitive optical amplifiers and their applications

Swedish Research Council (VR) (2015-00535), 2016-01-01 -- 2025-12-31.

Subject Categories

Atom and Molecular Physics and Optics

Other Physics Topics

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1364/OE.509284

PubMed

38297736

More information

Latest update

2/15/2024