Behavior of iron-based oxygen carriers at deep reduction states
Doctoral thesis, 2024

Oxygen carriers have an important role as bed materials in both common circulating fluidized bed combustion unit (also known as oxygen-carrier-aided combustion, OCAC) and in various chemical looping processes. Contrary to conventional bed materials, e.g., sand, oxygen carriers are capable of transferring both oxygen and heat. This makes it possible to produce nitrogen-free product gas streams (in the case of chemical looping processes) and achieve a higher fuel conversion. Having been studied for almost three decades, various oxygen carriers show their own pros and cons depending on the processes for which they are intended to be used. Most of the published studies before this doctoral thesis focused on the reactivity and utilization of oxygen carriers in chemical looping combustion (CLC), where a complete fuel conversion is always desired. Nevertheless, this is not the case in, for example, chemical looping gasification, reforming, and water splitting, where only partial fuel oxidation is necessary, and the produced flue gases are the desired products. In such processes, the oxygen carriers can be exposed to a higher reduction degree than it would be in CLC or OCAC. This warrants further investigations into the deep reduction states of relevant oxygen carriers, which are expected to encounter inevitable performance issues under such a harsh environment.

In this thesis, some aspects related to the physical performance and properties of various iron-based oxygen carriers in the occurrence of deep reduction states are examined and presented. The first part of the thesis focuses on the fluidization performance, attrition resistance, and particle size and shape analysis. This part is important mainly for assessing material stability. Iron-based oxygen carriers typically tend to encounter bed defludization at a high degree of reduction. The outward migration of iron into the particle surface, which typically creates a FeO/Fe layer, likely causes defludization. Furthermore, the oxidation state of oxygen carriers does affect the attrition resistance of iron oxygen carriers to varying extents. The results indicate that the presence of Fe-Ti and Fe-Si combinations contribute to a generally stable and low attrition rate, while an Fe-Ca system exhibits a decreasing attrition rate. In addition, the influence of exposure to redox cycles and oxidation degree on the size and shape of oxygen carrier particles seems to be minimal. The oxygen carrier particles generally have a high sphericity but are slightly elongated.

Reactivity and fuel conversion are the other focuses of this thesis. These have main implications for engineering design but also for material screening. The apparent kinetic study of oxygen carrier performed in this thesis demonstrates that the changing grain size (CGS) model is applicable to predict the reactivity of three iron oxygen carriers in the presence of CO, H2, and CH4. This applies even at lower oxidation degrees (3 – 5 wt.% reduction), where the reactivity of oxygen carriers has generally decreased. Finally, the gasification rate of pine forest residue char remains at similar levels when using either ilmenite or iron sand as the oxygen carrier.

oxygen carrier

fuel conversion

chemical looping

physical performance

deep reduction

reactivity

iron oxides

KB-salen, Kemigården 4, Chalmers
Opponent: Fabrizio Scala, Università degli Studi di Napoli Federico II, Italy



Author

Victor Purnomo

Chalmers, Space, Earth and Environment, Energy Technology

Chalmers, Chemistry and Chemical Engineering, Energy and Material

Purnomo, V., Mei, D., Staničić, I., Mattisson, T., Leion, H. Effect of oxidation degree on apparent kinetics of iron-based oxygen carriers

Syrebärande järnpartiklar för hållbar energi

Klimatförändringarna är för närvarande ett av de allvarligaste hoten mot livet på jorden. Det orsakas främst av utsläpp av växthusgaser som exempelvis koldioxid (CO2) till atmosfären. Koldioxid produceras vanligtvis från olika moderna mänskliga aktiviteter, framför allt förbränning av fossila bränslen. En snabb ansamling av koldioxid i atmosfären håller kvar värmen på jorden och gör att den globala temperaturen stiger. Detta i sin tur får havsnivån att stiga och gör extrema väderhändelser allt vanligare.

För att vända utvecklingen behövs infångning och lagring av koldioxid för att minimera koldioxidutsläppen till atmosfären. En av de mest lovande teknologier med avseende på detta är kemcykliska processer. Dessa består vanligtvis av ett par sammankopplade tankar med metalloxidpartiklar som kallas syrebärare som gör det möjligt att transportera syre och jämna ut värme mellan tankarna. På så sätt skapas en ren ström av koldioxid när man förbränner bränsle.

Egenskaper och prestanda hos järnsyrebärare har varit fokus för denna avhandling. De utforskade järnsyrebare omfattar främst malmen ilmenit, samt järnsand, och stålslagg som är restprodukter från respektive koppar- och stålindustrin. Resultat omkring mekanisk beständighet och reaktivitet hos syrebärare samt bränsleomvandling vid användning av olika material utarbetas och diskuteras. Dessa kan användas i många applikationer, särskilt förgasning, reformering, och vätgasproduktion. I ett större perspektiv bidrar dessa kunskaper till etableringen av miljöanpassad energiproducerande teknik.

Oxygen-carrying particles for sustainable energy

Climate change is currently one of the most serious threats to life on Earth. It is mainly caused by emissions of greenhouse gases, such as carbon dioxide (CO2), into the atmosphere. Carbon dioxide is usually generated from various modern human activities, most notably the burning of fossil fuels. A rapid accumulation of carbon dioxide in the atmosphere retains heat on Earth and causes the global temperature to rise. This in turn leads to the rising sea levels and frequent occurence of natural catastrophes.

To reverse the trend, there is a need for carbon capture and storage (CCS), which can minimize carbon dioxide emissions to the atmosphere. One of the most promising technologies in this regard is chemical looping processes. The system usually comprises a pair of interconnected reactors with metal oxide particles, called oxygen carriers, that allow oxygen transfer and heat distribution between the reactors. In this way, a nitrogen-free carbon dioxide stream is generated when fuel is burned.

Properties and performance of iron oxygen carriers are the focus of this thesis. The explored iron oxygen carriers mainly include ilmenite ore, as well as iron sand and steel converter slag, which are residual products from copper and steel industry, respectively. Results regarding mechanical stability and reactivity of oxygen carriers as well as fuel conversion when using different oxygen carriers are presented and discussed. These are relevant to many applications, especially gasification, reforming, and hydrogen production. From a broader perspective, this knowledge contributes to the establishment of environmentally sustainable energy producing technology.

Chemical Looping gAsification foR sustainAble production of biofuels (CLARA))

European Commission (EC) (EC/H2020/817841), 2018-11-01 -- 2022-10-31.

Kemcyklisk förgasning för produktion av bioflygbränsle med negativa emissioner

Swedish Energy Agency (51430-1), 2021-01-01 -- 2023-12-31.

Utveckling av kemcyklisk förgasning av biomassa för produktion av biobränsle

ÅForsk (Ref.nr20-269), 2020-08-01 -- 2022-12-31.

Subject Categories

Inorganic Chemistry

Energy Engineering

Chemical Process Engineering

Materials Chemistry

Other Chemical Engineering

Climate Research

Driving Forces

Sustainable development

Areas of Advance

Energy

Infrastructure

Chalmers Materials Analysis Laboratory

ISBN

978-91-8103-009-9

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5467

Publisher

Chalmers

KB-salen, Kemigården 4, Chalmers

Online

Opponent: Fabrizio Scala, Università degli Studi di Napoli Federico II, Italy

More information

Latest update

3/7/2024 1