Behavior of iron-based oxygen carriers at deep reduction states
Doctoral thesis, 2024
In this thesis, some aspects related to the physical performance and properties of various iron-based oxygen carriers in the occurrence of deep reduction states are examined and presented. The first part of the thesis focuses on the fluidization performance, attrition resistance, and particle size and shape analysis. This part is important mainly for assessing material stability. Iron-based oxygen carriers typically tend to encounter bed defludization at a high degree of reduction. The outward migration of iron into the particle surface, which typically creates a FeO/Fe layer, likely causes defludization. Furthermore, the oxidation state of oxygen carriers does affect the attrition resistance of iron oxygen carriers to varying extents. The results indicate that the presence of Fe-Ti and Fe-Si combinations contribute to a generally stable and low attrition rate, while an Fe-Ca system exhibits a decreasing attrition rate. In addition, the influence of exposure to redox cycles and oxidation degree on the size and shape of oxygen carrier particles seems to be minimal. The oxygen carrier particles generally have a high sphericity but are slightly elongated.
Reactivity and fuel conversion are the other focuses of this thesis. These have main implications for engineering design but also for material screening. The apparent kinetic study of oxygen carrier performed in this thesis demonstrates that the changing grain size (CGS) model is applicable to predict the reactivity of three iron oxygen carriers in the presence of CO, H2, and CH4. This applies even at lower oxidation degrees (3 – 5 wt.% reduction), where the reactivity of oxygen carriers has generally decreased. Finally, the gasification rate of pine forest residue char remains at similar levels when using either ilmenite or iron sand as the oxygen carrier.
iron oxides
oxygen carrier
chemical looping
fuel conversion
physical performance
deep reduction
reactivity
Author
Victor Purnomo
Chalmers, Space, Earth and Environment, Energy Technology
Chalmers, Chemistry and Chemical Engineering, Energy and Material
Study of defluidization of iron- and manganese-based oxygen carriers under highly reducing conditions in a lab-scale fluidized-bed batch reactor
Fuel Processing Technology,;Vol. 219(2021)
Journal article
Effect of the Mass Conversion Degree of an Oxygen Carrier on Char Conversion and Its Implication for Chemical Looping Gasification
Energy & Fuels,;Vol. 36(2022)p. 9768-9779
Journal article
Performance of iron sand as an oxygen carrier at high reduction degrees and its potential use for chemical looping gasification
Fuel,;Vol. 339(2023)
Journal article
Effect of the Conversion Degree on the Apparent Kinetics of Iron-Based Oxygen Carriers
Energy & Fuels,;Vol. 38(2024)p. 11824-11836
Journal article
Effect of oxidation degree of iron-based oxygen carriers on their mechanical strength
Powder Technology,;Vol. 438(2024)
Journal article
New approach for particle size and shape analysis of iron-based oxygen carriers at different oxidation degrees
Particuology,;Vol. 90(2024)p. 493-503
Journal article
Klimatförändringarna är för närvarande ett av de allvarligaste hoten mot livet på jorden. Det orsakas främst av utsläpp av växthusgaser som exempelvis koldioxid (CO2) till atmosfären. Koldioxid produceras vanligtvis från olika moderna mänskliga aktiviteter, framför allt förbränning av fossila bränslen. En snabb ansamling av koldioxid i atmosfären håller kvar värmen på jorden och gör att den globala temperaturen stiger. Detta i sin tur får havsnivån att stiga och gör extrema väderhändelser allt vanligare.
För att vända utvecklingen behövs infångning och lagring av koldioxid för att minimera koldioxidutsläppen till atmosfären. En av de mest lovande teknologier med avseende på detta är kemcykliska processer. Dessa består vanligtvis av ett par sammankopplade tankar med metalloxidpartiklar som kallas syrebärare som gör det möjligt att transportera syre och jämna ut värme mellan tankarna. På så sätt skapas en ren ström av koldioxid när man förbränner bränsle.
Egenskaper och prestanda hos järnsyrebärare har varit fokus för denna avhandling. De utforskade järnsyrebare omfattar främst malmen ilmenit, samt järnsand, och stålslagg som är restprodukter från respektive koppar- och stålindustrin. Resultat omkring mekanisk beständighet och reaktivitet hos syrebärare samt bränsleomvandling vid användning av olika material utarbetas och diskuteras. Dessa kan användas i många applikationer, särskilt förgasning, reformering, och vätgasproduktion. I ett större perspektiv bidrar dessa kunskaper till etableringen av miljöanpassad energiproducerande teknik.
Climate change is currently one of the most serious threats to life on Earth. It is mainly caused by emissions of greenhouse gases, such as carbon dioxide (CO2), into the atmosphere. Carbon dioxide is usually generated from various modern human activities, most notably the burning of fossil fuels. A rapid accumulation of carbon dioxide in the atmosphere retains heat on Earth and causes the global temperature to rise. This in turn leads to the rising sea levels and frequent occurence of natural catastrophes.
To reverse the trend, there is a need for carbon capture and storage (CCS), which can minimize carbon dioxide emissions to the atmosphere. One of the most promising technologies in this regard is chemical looping processes. The system usually comprises a pair of interconnected reactors with metal oxide particles, called oxygen carriers, that allow oxygen transfer and heat distribution between the reactors. In this way, a nitrogen-free carbon dioxide stream is generated when fuel is burned.
Properties and performance of iron oxygen carriers are the focus of this thesis. The explored iron oxygen carriers mainly include ilmenite ore, as well as iron sand and steel converter slag, which are residual products from copper and steel industry, respectively. Results regarding mechanical stability and reactivity of oxygen carriers as well as fuel conversion when using different oxygen carriers are presented and discussed. These are relevant to many applications, especially gasification, reforming, and hydrogen production. From a broader perspective, this knowledge contributes to the establishment of environmentally sustainable energy producing technology.
Kemcyklisk förgasning för produktion av bioflygbränsle med negativa emissioner
Swedish Energy Agency (51430-1), 2021-01-01 -- 2023-12-31.
Utveckling av kemcyklisk förgasning av biomassa för produktion av biobränsle
ÅForsk (Ref.nr20-269), 2020-08-01 -- 2022-12-31.
Chemical Looping gAsification foR sustainAble production of biofuels (CLARA))
European Commission (EC) (EC/H2020/817841), 2018-11-01 -- 2022-10-31.
Subject Categories
Inorganic Chemistry
Energy Engineering
Chemical Process Engineering
Materials Chemistry
Other Chemical Engineering
Climate Research
Driving Forces
Sustainable development
Areas of Advance
Energy
Infrastructure
Chalmers Materials Analysis Laboratory
ISBN
978-91-8103-009-9
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5467
Publisher
Chalmers
KB-salen, Kemigården 4, Chalmers
Opponent: Fabrizio Scala, Università degli Studi di Napoli Federico II, Italy