Singlet Fission and Exciton Coupling Design Principles for Efficient Photon Harvesting
Doctoral thesis, 2024
Both SF and exciton coupling rely heavily on the relative orientation and distance between the interacting molecules. Therefore, the essence of the research presented in this thesis revolves around the complex interplay between molecular structure and photophysical properties. This thesis underscores how various configurations of identical molecules can result in diverse photophysical outcomes. Furthermore, it showcases the importance of considering both the interconnectivity of molecules from a Lewis structure and optimal energy configuration standpoint, as well as their capacity to assume different conformations dynamically.
SF has been explored in three systems. The initial investigation, focused on pentacene derivatives, aimed at elucidating the impact of rotational conformations in intramolecular SF systems. The second study aimed to expand the limited library of photostable, intramolecularly capable SF molecules by investigating an anthracene derivative. However, this study revealed additional processes that hindered SF efficiency, underscoring the delicate balance required between energetics, molecular interconnectivity, and solvent polarity for efficient SF. In the final SF study, strides were made towards integrating SF into dye-sensitized solar cells, utilizing a derivative of diphenylisobenzofuran integrated with semiconductor thin films. The study highlights the importance of substrate energetics and solvent polarity in dictating the dominant photophysical processes on the surface, with highly polar solvents impeding SF by stabilizing charge-separated states. In the exciton coupling related study, strategic alignment of molecular systems comprising boron dipyrromethene and anthracene in a covalent J-aggregate-like configuration demonstrated a novel method of selectively modulating the energy of the singlet excited state while leaving the triplet excited state energy unaffected. This work thus demonstrates how photophysical properties can be tuned via molecular design, with potential applications in various fields of optoelectronics.
exciton coupling
electron transfer
Singlet fission
transient absorption spectroscopy
Author
Rasmus Ringström
Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry
Singlet Fission and Electron Injection from the Triplet Excited State in Diphenylisobenzofuran-Semiconductor Assemblies: Effects of Solvent Polarity and Driving Force
Journal of Physical Chemistry C,;Vol. 124(2020)p. 20794-20805
Journal article
Molecular rotational conformation controls the rate of singlet fission and triplet decay in pentacene dimers
Chemical Science,;Vol. In Press(2022)
Journal article
Triplet Formation in a 9,10-Bis(phenylethynyl)anthracene Dimer and Trimer Occurs by Charge Recombination Rather than Singlet Fission
Journal of Physical Chemistry Letters,;Vol. 14(2023)p. 7897-7902
Journal article
Schäfer, C. Ringström, R. Hanrieder, J. Rahm, M. Albinsson, B. Börjesson, K. Selective Lowering of the Singlet Excited State Energy to Decrease the Singlet-triplet Gap via Intramolecular Exciton-Exciton Coupling.
Solljus kan betraktas som en ström av ljuspartiklar som kallas fotoner. Dessa fotoner har en varierad energifördelning, från låg till hög energi. Vid omvandling av solljus till elektricitet kan solceller endast absorbera en del av fotonerna som solen sänder ut. Vissa fotoner har för låg energi för att kunna tas upp, medan andra har för mycket energi, vilket resulterar i att överskott av energi förloras som värme i stället för att generera elektricitet.
Det övergripande syftet med forskningen som presenteras i denna avhandling är att undersöka molekyler som kan förbättra utnyttjandet av solenergi. En av de undersökta processerna kallas foton-nedkonvertering, vilken strävar efter att dela upp energin från högenergifotoner till två lågenergifotoner som båda kan absorberas av solceller och därmed öka elektricitetsproduktionen. En motsatt process, kallad foton-uppkonvertering, möjliggör sammanslagning av två lågenergifotoner till en högenergifoton som kan absorberas av solcellen. Båda processerna kräver interaktion mellan olika molekyler, och avhandlingens forskning fokuserar på att undersöka molekyler som kan utföra dessa processer. Genom att studera samspel mellan molekyler är målet att förstå hur processerna fungerar och hur de bäst kan användas för att öka solcellers effektivitet.
Driving Forces
Sustainable development
Areas of Advance
Nanoscience and Nanotechnology
Materials Science
Subject Categories
Physical Chemistry
Roots
Basic sciences
Infrastructure
Chalmers Materials Analysis Laboratory
ISBN
978-91-8103-016-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5474
Publisher
Chalmers
KE-salen, Kemigården 4.
Opponent: Eric Vauthey, University of Geneva, Switzerland