Traces on ultrapowers of C*-algebras
Journal article, 2024

Using Cuntz semigroup techniques, we characterize when limit traces are dense in the space of all traces on a free ultrapower of a C*-algebra. More generally, we consider density of limit quasitraces on ultraproducts of C*-algebras. Quite unexpectedly, we obtain as an application that every simple C*-algebra that is (m,n)-pure in the sense of Winter is already pure. As another application, we provide a partial verification of the first Blackadar–Handelman conjecture on dimension functions. Crucial ingredients in our proof are new Hahn–Banach type separation theorems for noncancellative cones, which in particular apply to the cone of extended-valued traces on a C*-algebra.

Traces

Cuntz semigroups

C -algebras ⁎

Ultraproducts

Author

Ramon Antoine

Universitat Autonoma de Barcelona (UAB)

Centre de Recerca Matemàtica

Francesc Perera

Centre de Recerca Matemàtica

Universitat Autonoma de Barcelona (UAB)

Leonel Robert

University of Louisiana at Lafayette

Hannes Thiel

Chalmers, Mathematical Sciences, Analysis and Probability Theory

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 286 8 110341

Subject Categories

Mathematical Analysis

DOI

10.1016/j.jfa.2024.110341

More information

Latest update

2/23/2024