Traces on ultrapowers of C*-algebras
Artikel i vetenskaplig tidskrift, 2024

Using Cuntz semigroup techniques, we characterize when limit traces are dense in the space of all traces on a free ultrapower of a C*-algebra. More generally, we consider density of limit quasitraces on ultraproducts of C*-algebras. Quite unexpectedly, we obtain as an application that every simple C*-algebra that is (m,n)-pure in the sense of Winter is already pure. As another application, we provide a partial verification of the first Blackadar–Handelman conjecture on dimension functions. Crucial ingredients in our proof are new Hahn–Banach type separation theorems for noncancellative cones, which in particular apply to the cone of extended-valued traces on a C*-algebra.

Traces

Cuntz semigroups

C -algebras ⁎

Ultraproducts

Författare

Ramon Antoine

Universitat Autonoma de Barcelona (UAB)

Centre de Recerca Matemàtica

Francesc Perera

Centre de Recerca Matemàtica

Universitat Autonoma de Barcelona (UAB)

Leonel Robert

University of Louisiana at Lafayette

Hannes Thiel

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 286 8 110341

Ämneskategorier

Matematisk analys

DOI

10.1016/j.jfa.2024.110341

Mer information

Senast uppdaterat

2024-02-23