Double, double, toil, and trouble: The tails, bubbles, and knots of the local compact obscured nucleus galaxy NGC 4418
Journal article, 2024

Context. Compact obscured nuclei (CONs) are an extremely obscured (NH2>1025 cm-2) class of galaxy nuclei thought to exist in 20-40 per cent of nearby (ultra-)luminous infrared galaxies While they have been proposed to represent a key phase of the active galactic nucleus (AGN) feedback cycle, the nature of these CONs -what powers them, their dynamics, and their impact on the host galaxy -remains unknown. Aims. This work analyses the galaxy-scale optical properties of the local CON NGC 4418 (z=0.00727). The key aims of the study are to understand the impact of nuclear outflows on the host galaxy and infer the power source of its CON. Through the mapping of the galaxy spectra and kinematics, we seek to identify new structures in NGC 4418 to ultimately reveal more about the CON's history, its impact on the host, and, more generally, the role CONs play in galaxy evolution. Methods. We present new, targeted integral field unit observations of the galaxy with the Multi-Unit Spectroscopic Explorer (MUSE). For the first time, we mapped the ionised and neutral gas components of the galaxy, along with their dynamical structure, to reveal several previously unknown features of the galaxy. Results. We confirm the presence of a previously postulated, blueshifted outflow along the minor axis of NGC 4418. We find this outflow to be decelerating and, for the first time, show it to extend in both directions from the nucleus. We report the discovery of two further outflow structures: a redshifted southern outflow connected to a tail of ionised gas surrounding the galaxy and a blueshifted bubble to the north. In addition to these features, we find the [OIII] emission reveals the presence of knots across the galaxy, which are consistent with regions of the galaxy that have been photoionised by an AGN. Conclusions. We identify several new features in NGC 4418, including a bubble structure, a reddened outflow, and [OIII] knot structures throughout the galaxy. We additionally confirm the presence of a bilateral blueshifted outflow along the minor axis. Based on the properties of these features, we conclude that the CON in NGC 4418 is most likely powered by AGN activity.

Galaxies: nuclei

Galaxies: active

Galaxies: evolution

Author

Clare Wethers

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Susanne Aalto

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

G. Privon

University of Virginia

University of Florida

National Radio Astronomy Observatory

F. Stanley

Institut de Radioastronomie Millimétrique (IRAM)

J. S. Gallagher III

University of Wisconsin Madison

Mark Gorski

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Sabine König

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Kyoko Onishi

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Mamiko Sato

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Chentao Yang

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

R. J. Beswick

University of Manchester

Loreto Barcos-Munoz

University of Virginia

F. Combes

Paris Observatory

T. Diaz-Santos

Foundation for Research and Technology-Hellas (FORTH)

A. S. Evans

University of Virginia

National Radio Astronomy Observatory

I. García-Bernete

University of Oxford

C. Henkel

King Abdulaziz University

Max Planck Society

M. Imanishi

National Astronomical Observatory of Japan

S. Martin

Atacama Large Millimeter-submillimeter Array (ALMA)

European Southern Observatory Santiago

Sebastien Muller

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Y. Nishimura

University of Tokyo

C. Ricci

Diego Portales University

Beijing University of Technology

D. Rigopoulou

National Radio Astronomy Observatory

Serena Viti

Leiden University

University College London (UCL)

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 683 A27

Exploring the Hidden Dusty Nuclei of Galaxies (HIDDeN)

European Research Council (ERC) (789410), 2018-10-01 -- 2023-09-30.

Subject Categories

Astronomy, Astrophysics and Cosmology

Atom and Molecular Physics and Optics

DOI

10.1051/0004-6361/202347207

More information

Latest update

12/9/2024