Shedding light on liquid chromophores using machine learning
Licentiate thesis, 2024
machine learning
molecular dynamics
neutron scattering
machine learned force fields
chromophores
Author
Eric Lindgren
Chalmers, Physics, Condensed Matter and Materials Theory
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
Journal of Chemical Physics,;Vol. 157(2022)
Journal article
calorine: A Python package for constructing and sampling neuroevolution potential models
Journal of Open Source Software,;Vol. 9(2024)p. 6264-6264
Journal article
Lindgren, E, Fojt, J, Swenson, J, Müller, C, Erhart, P. Structural stability and dynamics of liquid chromophore aggregates
SwedNESS
Swedish Foundation for Strategic Research (SSF) (GSn15-0008), 2016-07-01 -- 2021-06-30.
Swedish Foundation for Strategic Research (SSF) (GSn15-0008), 2017-01-01 -- 2020-12-31.
Areas of Advance
Nanoscience and Nanotechnology
Materials Science
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Subject Categories (SSIF 2011)
Condensed Matter Physics
Publisher
Chalmers
PJ-salen, Fysikgården 2, GÖteborg
Opponent: Mathieu Linares, PDC Center for High Performance Computing, Kungliga Tekniska Högskolan, Sverige