Beyond Perturbation: Modeling Anharmonicity in Materials
Doctoral thesis, 2024
Today, we conceptualize these collective vibrational excitations as phonons. The study of phonons bridges theoretical and experimental approaches through computer simulations. Typically, phonons are studied at the lowest harmonic order and occasionally to the first order using perturbation theory. However, in many systems of interest, anharmonic motion, which represents interactions among phonons, is critical. Modeling this anharmonicity beyond perturbation theory is computationally intensive. Fortunately, recent advancements in various fields, both within and outside condensed matter physics, have made these simulations more feasible.
In this thesis, the primary computational tools for studying phonons are outlined and applied to a diverse range of materials. Emphasis is placed on understanding the underlying dynamics through microscopic correlation functions and their link to experimental observables via spectral functions. Additionally, some practical details, often overlooked in the literature, are discussed. Specifically, the framework of lattice dynamics and the characterization of the potential energy surface through force constants are described. For complex systems that extend beyond perturbation theory, the complementary approach of molecular dynamics is explored, with a focus on phonon dynamics.
These techniques are applied to two sets of materials currently of interest. First, anisotropic thermal conduction in rotationally disordered 2D van der Waals structures is examined using the Green-Kubo method. The findings align well with experimental results, demonstrating a substantial anisotropy that could be advantageous for managing thermal waste in integrated circuits. Moreover, the chemistry-independent suppression of through-plane thermal conductivity in these materials is shown. Additionally, through-plane thermal conduction as a function of the moiré twist angle is analyzed and correlated with an entropy measure. Lastly, the limitations of the quasi-particle picture of phonons are investigated in an inorganic halide perovskite. It is found that the soft phonons are overdamped over a wide temperature range above the phase transition but remain consistent with the model of independent damped harmonic oscillators.
Lattice Thermal Conductivity
Lattice dynamics
Molecular Dynamics
Peierls-Boltzmann Transport Equation
Phonons
Green-Kubo
Force Constants
Anharmonicity
Author
Fredrik Eriksson
Chalmers, Physics, Condensed Matter and Materials Theory
The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning
Advanced Theory and Simulations,;Vol. 2(2019)
Journal article
Efficient construction of linear models in materials modeling and applications to force constant expansions
npj Computational Materials,;Vol. 6(2020)
Journal article
Extremely anisotropic van der Waals thermal conductors
Nature,;Vol. 597(2021)p. 660-665
Journal article
Tuning the Through-Plane Lattice Thermal Conductivity in van der Waals Structures through Rotational (Dis)ordering
ACS Nano,;Vol. 17(2023)p. 25565-25574
Journal article
Limits of the phonon quasi-particle picture at the cubic-to-tetragonal phase transition in halide perovskites
Communications Physics,;Vol. 6(2023)
Journal article
En av fononernas primära egenskaper som vi är intresserade av är deras frekvenser. Den typiska förenklingen vi gör är att anta att fononerna har en fix frekvens som de oscillerar med och att de inte påverkas nämnvärt av de övriga fononerna i materialet. Detta kallas för den harmoniska förenklingen och fungerar väl för många system. För att förklara experiment och förstå till exempel termisk ledning måste vi dock modellera hur fononerna interagerar med varandra via anharmoniska interaktioner. Gitterdynamik är ett ramverk för att studera fononer i kristaller och här kan vi studera interaktionerna via störningsteori. För mer komplicerade material studerar vi istället fononer med en annan metod som heter molekylärdynamik.
Dessa två ramverk beskrivs i kappan och appliceras i de häftade artiklarna. I de två första artiklarna utvecklar vi en mjukvara för att från elektronstrukturberäkningar extrahera anharmoniska kraftkonstanter. Kraftkonstanterna är parametrarna som beskriver hur atomerna interagerar och styr därmed fononernas egenskaper. I de tre sista artiklarna använder vi maskininlärda interatomära potentialer för att med hjälp av molekylärdynamik studera fononer i olika material. Speciell vikt läggs på att studera termisk ledning i rotationsmässigt oordnade staplade strukturer av 2D-material.
Phase behavior and electronic properties of mixed halide perovskites from atomic scale simulations
Swedish Research Council (VR) (2020-04935), 2020-12-01 -- 2024-11-30.
Modelling Charge and Heat Transport in 2D-materials based Composites (MECHANIC)
Swedish Research Council (VR) (2017-06819), 2017-12-01 -- 2019-12-31.
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Subject Categories
Probability Theory and Statistics
Condensed Matter Physics
Areas of Advance
Materials Science
ISBN
978-91-8103-041-9
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5499
Publisher
Chalmers
Kollektorn, MC2 byggnad, Kemivägen 9, Chalmers, Göteborg
Opponent: Dr. Florian Libisch, Vienna University of Technology, Austria