Assessment of fine and coarse tyre wear particles along a highway stormwater system and in receiving waters: Occurrence and transport
Journal article, 2024

Tyre wear has been identified as a major road-related pollutant source, with road runoff transporting tyre wear particles (TWP) to adjacent soil, watercourses, or further through stormwater systems. The aim of this study was to investigate the occurrence and transport of TWP along a stormwater system. Water and sediment have been sampled at selected points (road runoff, gully pots, wells, outlet to a ditch, and stream) through a stormwater system situated along a highway in Sweden during November and December 2022, and March 2023. As there is limited data on the size distribution of TWP in different environmental media, especially in the size fraction <20 μm, the samples were fractioned into a fine (1.6–20 μm) and a coarse (1.6–500 μm) size fraction. The samples were analysed using a combination of marker compounds (benzene, α-methylstyrene, ethylstyrene, and butadiene trimer) for styrene-butadiene rubbers with PYR-GC/MS from which TWP concentration was calculated. Suspended solids were analysed in the water samples, and organic content was analysed in the sediment samples. TWP was found at nearly all locations, with concentrations up to 17 mg/L in the water samples and up to 40 mg/g in the sediment samples. In the sediment samples, TWP in the size fraction 1.6–20 μm represented a significant proportion (20–60%). Correlations were found between TWP concentration and suspended solids in the water samples (r = 0.87) and organic content in the sediment samples (r = 0.72). The results presented in this study demonstrate that TWP can be transported to the surrounding environment through road runoff, with limited retention in the studied stormwater system.

Road runoff

Sampling

Tyre and road wear

Microplastics

Gully pot

Tire

Author

Elly Lucia Gaggini

Chalmers, Architecture and Civil Engineering, Water Environment Technology

Maria Polukarova

Chalmers, Architecture and Civil Engineering, Water Environment Technology

The Swedish National Road and Transport Research Institute (VTI)

Mia Bondelind

Chalmers, Architecture and Civil Engineering, Water Environment Technology

Elisabeth Rødland

Norwegian Institute for Water Research

Ann-Margret Hvitt Strömvall

Chalmers, Architecture and Civil Engineering, Water Environment Technology

Yvonne Andersson-Sköld

Chalmers, Architecture and Civil Engineering

The Swedish National Road and Transport Research Institute (VTI)

Ekaterina Sokolova

Uppsala University

Journal of Environmental Management

0301-4797 (ISSN) 1095-8630 (eISSN)

Vol. 367 121989

Microplastics in road runoff: occurrence, properties and transport modelling

Formas (2019-00284), 2020-01-01 -- 2022-12-31.

Norwegian Public Roads Administration (NPRA) (B11191 Ferjefri E39), 2020-01-01 -- 2024-12-31.

Subject Categories

Water Engineering

Geochemistry

Environmental Sciences

DOI

10.1016/j.jenvman.2024.121989

PubMed

39096731

More information

Latest update

8/8/2024 7