Remote Sensing of Ice Cloud Properties With Millimeter and Submillimeter-Wave Polarimetry
Journal article, 2024

Ice clouds are poorly constrained in current global climate and weather models and have been used as a tuning parameter in the models to balance radiation budget at the top of atmosphere and precipitation at the surface. Sub-millimeter-wave (Submm) remote sensing can fill the sensitivity gap of cloud ice observations between visible/infrared (VIS/IR) and microwave (MW) frequencies. The added value from submm-wave bands has been recognized for achieving a better understanding of cloud, convection and precipitation (CCP) processes. Recent satellite observations at microwave frequencies showed promising results that additional information on cloud microphysical properties (e.g., ice particle shape and orientation) can be inferred from V-pol and H-pol radiances. Motivated by the added value from cloud polarimeters, a compact SWIRP (Submm-Wave and Long-Wave InfraRed Polarimeter) was developed under NASA’s Instrument Incubator Program (IIP) to reduce instrument size, weight, power (SWaP) for future Earth science missions. Low-SWaP sensors like SWIRP will allow the cost-effective implementation of a distributed observing system to study fast cloud processes with the needed spatiotemporal sampling.

SmallSat

ice cloud

microphysics

MMIC

remote sensing

microwaves in climate change

Submm-wave

Author

D. L. Wu

NASA Goddard Space Flight Center

J. Gong

NASA Goddard Space Flight Center

William R. Deal

Northrop Grumman corporation

Willian Gaines

Northrop Grumman corporation

Caitlyn M. Cooke

Northrop Grumman corporation

Giovanni de Amici

NASA Goddard Space Flight Center

Peter Pantina

Science Systems and Applications, Inc.

Yuli Liu

University of Maryland

P. Yang

Texas A&M University

Patrick Eriksson

Chalmers, Space, Earth and Environment, Geoscience and Remote Sensing

R. Bennartz

Vanderbilt University

IEEE Journal of Microwaves

26928388 (eISSN)

Vol. In Press

Subject Categories

Aerospace Engineering

Meteorology and Atmospheric Sciences

DOI

10.1109/JMW.2024.3487758

More information

Latest update

12/4/2024