Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Journal article, 2024
Author
Raoul Collenteur
Eawag - Swiss Federal Institute of Aquatic Science and Technology
Ezra Haaf
Geology and Geotechnics
Mark Bakker
Delft University of Technology
Tanja Liesch
Karlsruhe Institute of Technology (KIT)
Andreas Wunsch
Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB
Jenny Soonthornrangsan
Delft University of Technology
Jeremy White
INTERA Incorporated
Nick Martin
Southwest Research Institute
Rui Hugman
INTERA Incorporated
Ed De Sousa
INTERA Incorporated
Didier Vanden Berghe
GINGER
Xinyang Fan
University of Bern
University of Erlangen-Nuremberg (FAU)
Tim J. Peterson
Monash University
Jānis Bikše
University of Latvia
Antoine Di Ciacca
Lincoln Agritech Ltd
Xinyue Wang
Brown University
Yang Zheng
Brown University
Maximilian Nölscher
Federal Institute for Geosciences and Natural Resources
Julian Koch
Geological Survey of Denmark and Greenland (GEUS)
Raphael Schneider
Geological Survey of Denmark and Greenland (GEUS)
Nikolas Benavides Höglund
Lund University
Sivarama Krishna Reddy Chidepudi
M2C - Coastal and Continental Morphodynamics Laboratory
BRGM
Abel Henriot
BRGM
Nicolas Massei
M2C - Coastal and Continental Morphodynamics Laboratory
Abderrahim Jardani
M2C - Coastal and Continental Morphodynamics Laboratory
Max Gustav Rudolph
Technische Universität Dresden
Amir Rouhani
Helmholtz
J. Jaime Gómez-Hernández
Polytechnic University of Valencia (UPV)
Seifeddine Jomaa
Helmholtz
Anna Pölz
Vienna University of Technology
Interuniversity Cooperation Centre for Water and Health
Tim Franken
Sumaqua
Morteza Behbooei
David R. Cheriton School of Computer Science
Jimmy Lin
David R. Cheriton School of Computer Science
Rojin Meysami
David R. Cheriton School of Computer Science
Hydrology and Earth System Sciences
1027-5606 (ISSN) 16077938 (eISSN)
Vol. 28 23 5193-5208Subject Categories (SSIF 2011)
Earth and Related Environmental Sciences
Electrical Engineering, Electronic Engineering, Information Engineering
DOI
10.5194/hess-28-5193-2024