Investigating the missing-wedge problem in smallangle X-ray scattering tensor tomography across real and reciprocal space
Journal article, 2024

Small-angle-scattering tensor tomography is a technique for studying anisotropic nanostructures of millimetre-sized samples in a volume-resolved manner. It requires the acquisition of data through repeated tomographic rotations about an axis which is subjected to a series of tilts. The tilt that can be achieved with a typical setup is geometrically constrained, which leads to limits in the set of directions from which the different parts of the reciprocal space map can be probed. Here, we characterize the impact of this limitation on reconstructions in terms of the missing wedge problem of tomography, by treating the problem of tensor tomography as the reconstruction of a three-dimensional field of functions on the unit sphere, represented by a grid of Gaussian radial basis functions. We then devise an acquisition scheme to obtain complete data by remounting the sample, which we apply to a sample of human trabecular bone. Performing tensor tomographic reconstructions of limited data sets as well as the complete data set, we further investigate and validate the missing wedge problem by investigating reconstruction errors due to data incompleteness across both real and reciprocal space. Finally, we carry out an analysis of orientations and derived scalar quantities, to quantify the impact of this missing wedge problem on a typical tensor tomographic analysis. We conclude that the effects of data incompleteness are consistent with the predicted impact of the missing wedge problem, and that the impact on tensor tomographic analysis is appreciable but limited, especially if precautions are taken. In particular, there is only limited impact on the means and relative anisotropies of the reconstructed reciprocal space maps.

small-angle scattering

nanostructure

tensor tomography

optimization

missing wedge problem

Author

Leonard Nielsen

Chalmers, Physics, E-commons

Torne Tänzer

Swiss Federal Institute of Technology in Lausanne (EPFL)

Paul Scherrer Institut

Irene Rodriguez-Fernandez

Paul Scherrer Institut

Paul Erhart

Chalmers, Physics

Marianne Liebi

Chalmers, Physics, Materials Physics

Swiss Federal Institute of Technology in Lausanne (EPFL)

Paul Scherrer Institut

Journal of Synchrotron Radiation

0909-0495 (ISSN) 1600-5775 (eISSN)

Vol. 31 5 1327-1339

SAXS- and WAXS- tensor tomography: A new tool for the analysis of multi-scale materials

Swedish Research Council (VR) (2018-04144), 2019-01-01 -- 2022-12-31.

Multi-Modal Tensor Tomography (MUMOTT)

European Commission (EC) (EC/H2020/949301), 2021-01-01 -- 2025-12-31.

Subject Categories (SSIF 2011)

Mathematical Analysis

DOI

10.1107/S1600577524006702

PubMed

39196770

More information

Latest update

1/10/2025