Pressure Coupled Representative Interactive Linear Eddy Modeling for Internal Combustion Engine simulations
Doctoral thesis, 2025

The ongoing battle over the environmental ramifications of internal combustion engines is continuously intensifying. As the automotive industry gradually shifts towards adopting light- and medium-duty electric vehicles, the transition for heavy-duty transport solutions such as trucks and ships remains challenging. This is due to the inherent limitations of battery technology in these specific applications, such as low energy density, low range, insufficient power requirement, and inadequate charging infrastructure. This implies preserving  Internal Combustion Engines (ICE) as a valid technology for high-power applications. However, the environmental impact of operating ICEs by burning fossil fuels, such as diesel, is significant. Therefore, enhancing the combustion process within the ICE is essential. The reduction of pollutants emitted by the combustion engine is realized via operating the engine in nonstandard conditions such as Homogeneous Charge Compression Ignition  (HCCI) or Premixed Charge Compression Ignition (PCCI), which require in-depth Computational Fluid Dynamics (CFD) simulations investigations. These simulations require specialized combustion modeling techniques capable of accurately representing finite-rate chemistry and mixed-mode combustion.

The Linear Eddy Model (LEM) was utilized in this work to predict the turbulent combustion process. LEM is distinctive in its ability to simulate turbulent combustion on a 1D line in physical space, thereby capturing all scales down to the Kolmogorov length. The LEM advanced three processes: i) Turbulence in 1D physical space via stochastic rearrangement, i.e., Triplet maps. ii) Molecular diffusion and heat conduction via advancing 1D zero-Mach number equations of species mass fractions and energy in physical space. iii) Chemical advancement in each LEM cell. This approach allows for a detailed simulation of unsteady turbulent combustion processes occurring in ICEs on the LEM.

This research led to the development of a novel stand-alone LEM model for engine combustion simulations called Spherical Stand Alone LEM (SSALEM). It is based on coupling the spherical formulation of LEM to precalculated CFD quantities using a pressure constraint. The pressure coupling enabled the direct capturing of heat effects such as the latent heat of evaporation and wall heat losses on the LEM with no modeling, as these effects are an intrinsic part of the enforced CFD pressure trace. SSALEM simulated an engine with a pressure coupling constraint based on a simple slider-crank model, where initial investigations were realized. Later, LEM was coupled to a CFD simulation using the same pressure constraint in the Representative Interactive LEM (RILEM) configuration. However, it was observed that advancing one line was not sufficient to adequately resolve the turbulent scalar statistics. For that, several LEM lines were advanced in parallel with different turbulence rearrangements coupled to one CFD solver, i.e., Multiple RILEM. MRILEM was utilized to simulate the combustion process for a heavy-duty truck engine for part- and full-load scenarios. In this investigation, the progress variable was defined based on O2, and a novel PDF for the progress variable, namely a piece-wise step function, was utilized. MRILEM demonstrated a strong agreement with experimental data for the pressure trace and heat release both for part- and full-load cases. Afterward, a duct fuel injection was simulated with MRILEM, where the duct was implemented physically on the line(s). In this study, two different turbulence regions were implemented on the line, to simulate the high mixing rate inside the duct. MRILEM showcased a good correlation with experimental findings and results of other models when comparing results of heat release, lift-off lengths, and ignition delay. In addition, soot was also quantified on the CFD based on mapped LEM mass fractions. Finally, MRILEM simulated another heavy-duty engine case with a low compression ratio, where MRILEM was initialized with the solution of unsteady homogeneous reactors. This investigation analyzed the effect of varying key parameters for the combustion progress: Progress variable definition O2 and formation enthalpy h298 and progress variable PDF (Step function and presumed beta. This study displays and analyses the configurations that yielded the best matches with experiments. In addition, this work also introduced a tabulated RILEM method and analyzed the effect of advancing a TRILEM compared to conventional MRILEM on the combustion process and the simulation time.

Linear Eddy Model

Pollutant Formation

Turbulent-Chemistry Interaction

Pressure Coupling

Lecture hall HA2, Hörsalsvägen 4, Chalmers, Gothenburg
Opponent: Prof. Dr.-Ing. Christian Hasse, Technical University of Darmstadt, Germany

Author

Nidal Doubiani

Chalmers, Mechanics and Maritime Sciences (M2), Energy Conversion and Propulsion Systems

Bevarande av förbränningsmotorn (ICE), särskilt för tillämpningar med hög effekt, förblir avgörande eftersom framväxande teknologier som batterielektriska fordon (BEV) och bränslecellssystem med protonutbytesmembran (FCPEM) ännu inte är kapabla att möta efterfrågan. Emellertid fortsätter utsläppen från förbränningsmotorer att utgöra betydande miljöproblem, vilket kräver fortsatt forskning. Insatser för att minska skadliga utsläpp omfattar experimentella och numeriska undersökningar av innovativa teknologier och alternativa bränslen som syftar till att minska utsläppsnivåerna till miljösäkra standarder.

I detta doktorandarbete användes och förbättrades en nyligen introducerad modell med titeln: Representative Interactive Linear Eddy Model för undersökning av förbränningsmotorer. Modellen simulerar förbränningsprocessen i en 3D-förbränningskammare med hjälp av en endimensionell linje. Detta uppnås genom att anpassa transport- och turbulensekvationer till endimensionella transportequationer, även kallade noll-Mach-tal-ekvationer, och modellera endimensionella turbulenta virvlar med hjälp av triplet-maps.

Linear Eddy Model (LEM) applicerades först i kombination med en slider-crank-modell och anpassades till en tryckbaserad konfiguration, vilket eliminerade behovet av ytterligare värmemodellering längs linjen eftersom förbränningskammarens värmeeffekter fångades direkt genom det kommunicerade tryckförloppet. Därefter integrerades LEM i en interaktiv 3D-miljö för att simulera en tung motor, där förbränningsprocessen hämtades direkt från LEM-linjen. I en annan tillämpning användes LEM för att modellera ett kanaliserat bränsleinsprutningsscenario i en förbränningskammare med konstant volym, där dess implementering i det fysiska rummet gav flexibilitet genom att tillåta en direkt representation av kanalen på linjen. Slutligen testades Representative Interactive Linear Eddy Model (RILEM) på ett fall med låg kompressionsgrad, där en ny formulering för förbränningsprogressionsvariabeln introducerades för att konstruera en lämplig sannolikhetsdensitetsfunktion (PDF). Dessutom utvärderades en ny tabellerad LEM-metod genom att använda förkonstruerade tabeller från tidigare LEM-simuleringar för förbättrad effektivitet.

Driving Forces

Sustainable development

Areas of Advance

Transport

Energy

Subject Categories (SSIF 2025)

Fluid Mechanics

Energy Engineering

Infrastructure

C3SE (-2020, Chalmers Centre for Computational Science and Engineering)

Learning and teaching

Pedagogical work

ISBN

978-91-8103-163-8

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5621

Publisher

Chalmers

Lecture hall HA2, Hörsalsvägen 4, Chalmers, Gothenburg

Opponent: Prof. Dr.-Ing. Christian Hasse, Technical University of Darmstadt, Germany

More information

Latest update

1/24/2025