Pressure Coupled Representative Interactive Linear Eddy Modeling for Internal Combustion Engine simulations
Doktorsavhandling, 2025
The Linear Eddy Model (LEM) was utilized in this work to predict the turbulent combustion process. LEM is distinctive in its ability to simulate turbulent combustion on a 1D line in physical space, thereby capturing all scales down to the Kolmogorov length. The LEM advanced three processes: i) Turbulence in 1D physical space via stochastic rearrangement, i.e., Triplet maps. ii) Molecular diffusion and heat conduction via advancing 1D zero-Mach number equations of species mass fractions and energy in physical space. iii) Chemical advancement in each LEM cell. This approach allows for a detailed simulation of unsteady turbulent combustion processes occurring in ICEs on the LEM.
This research led to the development of a novel stand-alone LEM model for engine combustion simulations called Spherical Stand Alone LEM (SSALEM). It is based on coupling the spherical formulation of LEM to precalculated CFD quantities using a pressure constraint. The pressure coupling enabled the direct capturing of heat effects such as the latent heat of evaporation and wall heat losses on the LEM with no modeling, as these effects are an intrinsic part of the enforced CFD pressure trace. SSALEM simulated an engine with a pressure coupling constraint based on a simple slider-crank model, where initial investigations were realized. Later, LEM was coupled to a CFD simulation using the same pressure constraint in the Representative Interactive LEM (RILEM) configuration. However, it was observed that advancing one line was not sufficient to adequately resolve the turbulent scalar statistics. For that, several LEM lines were advanced in parallel with different turbulence rearrangements coupled to one CFD solver, i.e., Multiple RILEM. MRILEM was utilized to simulate the combustion process for a heavy-duty truck engine for part- and full-load scenarios. In this investigation, the progress variable was defined based on O2, and a novel PDF for the progress variable, namely a piece-wise step function, was utilized. MRILEM demonstrated a strong agreement with experimental data for the pressure trace and heat release both for part- and full-load cases. Afterward, a duct fuel injection was simulated with MRILEM, where the duct was implemented physically on the line(s). In this study, two different turbulence regions were implemented on the line, to simulate the high mixing rate inside the duct. MRILEM showcased a good correlation with experimental findings and results of other models when comparing results of heat release, lift-off lengths, and ignition delay. In addition, soot was also quantified on the CFD based on mapped LEM mass fractions. Finally, MRILEM simulated another heavy-duty engine case with a low compression ratio, where MRILEM was initialized with the solution of unsteady homogeneous reactors. This investigation analyzed the effect of varying key parameters for the combustion progress: Progress variable definition O2 and formation enthalpy h298 and progress variable PDF (Step function and presumed beta. This study displays and analyses the configurations that yielded the best matches with experiments. In addition, this work also introduced a tabulated RILEM method and analyzed the effect of advancing a TRILEM compared to conventional MRILEM on the combustion process and the simulation time.
Linear Eddy Model
Pollutant Formation
Turbulent-Chemistry Interaction
Pressure Coupling
Författare
Nidal Doubiani
Chalmers, Mekanik och maritima vetenskaper, Energiomvandling och framdrivningssystem
I detta doktorandarbete användes och förbättrades en nyligen introducerad modell med titeln: Representative Interactive Linear Eddy Model för undersökning av förbränningsmotorer. Modellen simulerar förbränningsprocessen i en 3D-förbränningskammare med hjälp av en endimensionell linje. Detta uppnås genom att anpassa transport- och turbulensekvationer till endimensionella transportequationer, även kallade noll-Mach-tal-ekvationer, och modellera endimensionella turbulenta virvlar med hjälp av triplet-maps.
Linear Eddy Model (LEM) applicerades först i kombination med en slider-crank-modell och anpassades till en tryckbaserad konfiguration, vilket eliminerade behovet av ytterligare värmemodellering längs linjen eftersom förbränningskammarens värmeeffekter fångades direkt genom det kommunicerade tryckförloppet. Därefter integrerades LEM i en interaktiv 3D-miljö för att simulera en tung motor, där förbränningsprocessen hämtades direkt från LEM-linjen. I en annan tillämpning användes LEM för att modellera ett kanaliserat bränsleinsprutningsscenario i en förbränningskammare med konstant volym, där dess implementering i det fysiska rummet gav flexibilitet genom att tillåta en direkt representation av kanalen på linjen. Slutligen testades Representative Interactive Linear Eddy Model (RILEM) på ett fall med låg kompressionsgrad, där en ny formulering för förbränningsprogressionsvariabeln introducerades för att konstruera en lämplig sannolikhetsdensitetsfunktion (PDF). Dessutom utvärderades en ny tabellerad LEM-metod genom att använda förkonstruerade tabeller från tidigare LEM-simuleringar för förbättrad effektivitet.
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Energi
Ämneskategorier (SSIF 2025)
Strömningsmekanik
Energiteknik
Infrastruktur
C3SE (-2020, Chalmers Centre for Computational Science and Engineering)
Lärande och undervisning
Pedagogiskt arbete
ISBN
978-91-8103-163-8
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5621
Utgivare
Chalmers
Lecture hall HA2, Hörsalsvägen 4, Chalmers, Gothenburg
Opponent: Prof. Dr.-Ing. Christian Hasse, Technical University of Darmstadt, Germany