The Steklov Spectrum of Convex Polygonal Domains I: Spectral Finiteness
Journal article, 2025

We explore the Steklov eigenvalue problem on convex polygons, focusing mainly on the inverse Steklov problem. Our primary finding reveals that, for almost all convex polygonal domains, there exist at most finitely many non-congruent domains with the same Steklov spectrum. Moreover, we obtain explicit upper bounds for the maximum number of mutually Steklov isospectral non-congruent polygonal domains. Along the way, we obtain isoperimetric bounds for the Steklov eigenvalues of a convex polygon in terms of the minimal interior angle of the polygon.

Steklov

Curvilinear polygon

Eigenvalues

Inverse spectral problem

Dirichlet-to-Neumann map

Polygon

Author

Emily B. Dryden

Bucknell University

Carolyn Gordon

Dartmouth College

Javier Moreno

University of Los Andes

Julie Rowlett

Chalmers, Mathematical Sciences, Analysis and Probability Theory

University of Gothenburg

Carlos Villegas-Blas

Universidad Nacional Autónoma de México

Journal of Geometric Analysis

1050-6926 (ISSN)

Vol. 35 3 91

Subject Categories (SSIF 2025)

Mathematical Analysis

DOI

10.1007/s12220-025-01922-8

More information

Latest update

2/28/2025