Facilitating Electric Passenger Transport Systems Integrating Renewable Energy Sources
Licentiate thesis, 2025
This thesis begins with a comprehensive review of infrastructure and energy supply for transport electrification, with emphasis on near-term charging demand prediction, the integration of renewable energy with charging infrastructure, and system-level impacts. Addressing identified research gaps, the first study develops an integrated agent-based modeling framework to generate spatiotemporal charging demand profiles. The framework jointly accounts for cost-aware charging behavior, daily activity chains, and route and mode choice, while incorporating multiple charger types, dynamic time-of-use tariffs, and probabilistic adaptive smart-charging behavior that allows users to shift charging to reduce costs while mitigating range anxiety.
Building on the near-future charging demand outputs, the second study develops a large-scale optimization framework for the deployment of multi-class public chargers, co-located photovoltaic systems, and battery energy storage (BESS). The framework jointly optimizes charger placement, PV sizing, BESS scheduling, and user incentives for short-distance spatial demand redirection, while accounting for land-use constraints, seasonal PV capacity factors, and time-of-use tariffs.
The developed approaches are demonstrated in a real-world case study of Gothenburg using multisource data. System benefits are assessed across economic, operational, and environmental dimensions. The results provide quantitative evidence on how user charging behavior and smart charging influence spatiotemporal demand, and how the integration of renewable energies with BESS and incentive-based demand management can jointly enable cost-effective and sustainable charging and energy supply for electric passenger transport.
Charging preferences
Charging demand forecasting
Battery storage systems
Renewable energy
Integrated modeling and optimization
Charging infrastructure deployment
Diverse user behavior
Author
Omkar Parishwad
Chalmers, Architecture and Civil Engineering, Geology and Geotechnics
The Role of Renewable Energy to Promote Future Electric Transport and Power Systems
The Routledge Handbook of Sustainable Urban Transport,;(2025)p. 361-373
Book chapter
Parishwad, O. Najafi, A. Gao, K. Integrated and agent-based charging demand estimation considering cost-aware and adaptive charging behavior
Parishwad, O. Najafi, A. Gao, K. Joint optimization of charging infrastructure and renewable energies with battery storage considering user redirection incentives
Electric Multimodal Transport Systems for Enhancing Urban Accessibility and Connectivity (eMATS)
European Commission (EC), 2023-01-01 -- 2025-12-31.
Swedish Energy Agency (2023-00029), 2023-05-05 -- 2026-04-30.
Areas of Advance
Transport
Subject Categories (SSIF 2025)
Multidisciplinary Geosciences
Social and Economic Geography
Transport Systems and Logistics
Formal Methods
Discrete Mathematics
Algorithms
Energy Engineering
Computational Mathematics
Energy Systems
Information Systems
Infrastructure Engineering
Statistical physics and complex systems
Lic / Architecture and Civil Engineering / Chalmers University of Technology: Technical report: 2025:5
Publisher
Chalmers
SB-S393, Sven Hultins Gata 6, Vån 3, Chalmers University of Technology, 412 58 Göteborg
Opponent: Pei Huang, Division of Sustainable Energy Systems, Mälardalen University, Sverige