Simulation-based parameter inference methods based on data-conditional simulation of stochastic dynamical systems
Doctoral thesis, 2025

Statistical inference for stochastic dynamical systems is a central problem in many scientific domains, yet is complicated by intractable likelihood functions, as well as partial and noisy observations. Simulation-based methods such as Approximate Bayesian Computation (ABC) offer a general route to Bayesian inference in this setting, but standard algorithms rely on myopic simulation methods that are unconditional on the data, and consequently suffer from low acceptance rates. In Paper I we introduce a data-conditional simulator for discretely observed stochastic differential equations (SDEs). The method leverages lookahead strategies and smoothing via backward simulation to accelerate ABC-Sequential Monte Carlo. By guiding the simulated trajectories toward the data, it substantially increases acceptance rates and accelerates convergence to the posterior distribution. In Paper II we target chemical reaction networks described by the chemical Langevin equation, a nonlinear SDE with multiplicative, non-commutative noise that poses challenges for simulation and inference. We extend the data-conditional simulator to partially observed systems with measurement noise, allowing trajectories to be guided toward the data in this more realistic setting. Moreover, we design a novel splitting scheme for the numerical solution of SDEs that preserves state space, densities, and oscillatory behavior, and enables robust inference even with large integration steps where Euler–Maruyama fails. In Paper III, we improve chain mixing and reduce the rejection rate in ABC-Markov Chain Monte Carlo. Because chains are typically initialized without knowledge of the posterior’s shape, we introduce a data-conditional extension of ABC–MCMC that eases initialization and increases acceptance rates.

stochastic differential equations

sequential Monte Carlo

splitting methods

chemical reaction networks

approximate Bayesian computation

Room Pascal, Mathematical Sciences, Chalmers University of Technology
Opponent: Dr Dennis Prangle, Associate Professor in Statistics, University of Bristol, UK

Author

Petar Jovanovski

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

Jovanovski, P., Picchini, U. Enhancing ABC–MCMC with data-conditional proposals for stochastic nonlinear models.

Många verkliga system, från biokemiska nätverk till ekologiska populationer och tillgångspriser, förändras på delvis slumpmässiga sätt, vilket gör dem svåra att kalibrera och förutsäga. En vanlig metod är att simulera modellen många gånger och behålla de körningar som liknar data, men de flesta simuleringar går till spillo eftersom de inte utnyttjar data under körning. Vi utvecklar metoder som låter data styra simuleringarna: de blickar framåt mot kommande mätningar och styr trajektorier mot det som observeras, även när mätningarna är brusiga eller bara vissa variabler registreras. Vi introducerar också en numeriskt stabil metod som bevarar viktiga beteenden (t.ex. oscillationer). Tillsammans minskar dessa idéer antalet misslyckade simuleringar och ger snabbare, mer tillförlitlig inferens för stokastiska dynamiska system.

Many real-world systems, from biochemical networks to ecological populations and asset prices, change in ways that are partly random, which makes them hard to fit and predict. Simulation-based inference tackles this by learning from simulations by comparing many model-generated datasets to the observed data. In practice this means simulating from the model many times and keeping the runs that resemble the observed data, but most of those simulations are wasted because they ignore the observed data while they run. We develop methods that use the observed data to guide the simulations: they look ahead to upcoming measurements and steer trajectories toward what is observed, even when measurements are noisy or only some variables are recorded. We also introduce a stable numerical method that preserves key behaviors (like oscillations).Together, these ideas cut down the number of failed simulations and deliver faster, more trustworthy inference for stochastic dynamical systems.

Deep learning and likelihood-free Bayesian inference for stochastic modelling

CHAIR, 2020-01-01 -- 2024-12-31.

Swedish Research Council (VR) (2019-03924), 2020-01-01 -- 2023-12-31.

Subject Categories (SSIF 2025)

Probability Theory and Statistics

Computational Mathematics

ISBN

978-91-8103-279-6

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 5737 ISSN 0346-718X

Publisher

Chalmers

Room Pascal, Mathematical Sciences, Chalmers University of Technology

Opponent: Dr Dennis Prangle, Associate Professor in Statistics, University of Bristol, UK

More information

Latest update

9/4/2025 1