Simulation-based parameter inference methods based on data-conditional simulation of stochastic dynamical systems
Doctoral thesis, 2025
stochastic differential equations
sequential Monte Carlo
splitting methods
chemical reaction networks
approximate Bayesian computation
Author
Petar Jovanovski
Chalmers, Mathematical Sciences, Applied Mathematics and Statistics
Jovanovski, P., Picchini, U. Enhancing ABC–MCMC with data-conditional proposals for stochastic nonlinear models.
Towards data-conditional simulation for ABC inference in stochastic differential equations
Bayesian Analysis,;Vol. In Press(2024)
Journal article
Deep learning and likelihood-free Bayesian inference for stochastic modelling
CHAIR, 2020-01-01 -- 2024-12-31.
Swedish Research Council (VR) (2019-03924), 2020-01-01 -- 2023-12-31.
Subject Categories (SSIF 2025)
Probability Theory and Statistics
Computational Mathematics
ISBN
978-91-8103-279-6
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 5737 ISSN 0346-718X
Publisher
Chalmers
Room Pascal, Mathematical Sciences, Chalmers University of Technology
Opponent: Dr Dennis Prangle, Associate Professor in Statistics, University of Bristol, UK