Disruption Mitigation in Tokamaks with Massive Material Injection
Doctoral thesis, 2025
The potentially greatest threat to be mitigated is posed by currents carried by highly energetic electrons, called runaway electrons, which may cause severe damage upon wall impact. The disruption mitigation system must also ensure a sufficiently homogeneous deposition of the thermal energy on the plasma-facing components, and avoid excessive forces on the machine due to currents flowing in the surrounding structures. The currently envisaged mitigation method is to initiate a massive material injection, primarily in the form of a shattered cryogenic pellet, when an emerging disruption is detected, and so attempt to better control the plasma cooling.
In this thesis, we develop modeling tools for the various physical phenomena present during a tokamak disruption mitigated by a massive material injection. This includes extending existing numerical tools with the capability to handle effects of partial ionization in the cooling plasma on the generation of runaway electrons, and the material assimilation in the plasma following a shattered pellet injection. It also includes the implementation of a method for estimating the losses of runaway electrons due to the vertical motion of the plasma, and the resulting scrape-off against the wall. These tools are then used to simulate a wide range of disruption mitigation scenarios in reactor-scale tokamak devices. Finally, we also develop an analytical model for the radial transport of the relatively cold and dense material recently ablated from a shattered pellet upon exposure to the hot plasma, and the acceleration of the pellet shards due to asymmetries in the ablation.
We find that the severity of a disruption in a reactor-scale device can be significantly reduced by a carefully chosen injection scheme. In particular, a two-stage injection might efficiently reduce the localised heat loads and the runaway generation due to the hot-tail mechanism, by allowing for an intermediate equilibration of the superthermal electron population between the injections. However, the strong runaway avalanche associated with a high plasma current was found to be able to amplify even a very small runaway seed, such as those produced by tritium decay and Compton scattering during nuclear operation, to several mega-amperes. With scrape-off losses included, plausible scenarios with a successful runaway mitigation exist, but the results are sensitive to the details of the evolution of the current density profile. This mitigation scheme might also be further complicated by a relatively large shard deceleration and outward drift of the recently ablated pellet material.
runaway electron
shattered pellet injection
disruption mitigation
fusion plasma
Author
Oskar Vallhagen
Chalmers
Runaway dynamics in the DT phase of ITER operations in the presence of massive material injection
Journal of Plasma Physics,;Vol. 86(2020)
Journal article
Effect of two-stage shattered pellet injection on tokamak disruptions
Nuclear Fusion,;Vol. 62(2022)
Journal article
Drift of ablated material after pellet injection in a tokamak
Journal of Plasma Physics,;Vol. 89(2023)
Journal article
Runaway electron dynamics in ITER disruptions with shattered pellet injections
Nuclear Fusion,;Vol. 64(2024)
Journal article
Pellet Rocket Effect in Magnetic Confinement Fusion Plasmas
Physical Review Letters,;Vol. 134(2025)
Journal article
Guth, N. J., Vallhagen, O., Helander, P., Fülöp, T., Tresnjic, A., Newton, S. L. Pusztai, I. The effect of plasmoid drifts on the pellet rocket effect in magnetic confinement fusion plasmas
Reduced modelling of scrape-off losses of runaway electrons during tokamak disruptions
Journal of Plasma Physics,;Vol. 91(2025)
Journal article
Vallhagen, O., Antonsson, L., Halldestam, P., Papp, G., Heinrich, P., Patel, A., Hoppe, M., Votta, L., the ASDEX Upgrade Team, the EUROfusion Tokamak Exploitation Team. Simulation of shattered pellet injections with plasmoid drifts in ASDEX Upgrade and ITER
Att generera energi genom kärnfusion, stjärnornas energikälla, har vissa likheter med sagor om folk som försöker tämja en drake till att bli deras arbetshäst. För att fusionsreaktionerna ska ske tillräckligt ofta måste bränslet hettas upp till omkring 100 miljoner grader Celsius, omkring tio gånger varmare än solens kärna. För att åstadkomma detta hålls bränslet, i form av ett plasma, inneslutet i en magnetisk bur som hindrar det från att skada maskinen.
Den magnetiska inneslutningen kan dock bli instabil och släppa ut energin som finns uppdämd i plasmat i form av extrem värme, magnetiska krafter på omgivande strukturer och strålar av högenergetiska elektroner, så kallade skenande elektroner. Om inneslutningen blir såpass instabil att den fallerar helt, så att det uppstår en så kallad disruption, kan bästa alternativet vara att stänga ner plasmat för att hindra att maskinen tar skada. Detta kan göras genom att avfyra en splittrad pellet mot det, som påminner om en snöboll bestående av väte och neon, i syfte att kyla ner plasmat på ett säkert och kontrollerat sätt. Att hugga av ett av drakens huvud kan dock resultera i att två nya växer tillbaks: en injektion anpassad för att oskadliggöra ett av ovan nämnda sätt som den uppdämda energin kan lämna plasmat på kan vara otillräcklig, eller rentav försvårande, för att mildra effekten av de andra. Detta problem kan undersökas experimentellt i de relativt småskaliga maskiner som finns idag, men disruptionsproblemet väntas bli betydligt värre i framtida maskiner stora nog för att kunna utgöra ett gångbart kraftverk. I sådana maskiner måste strategin för att mildra effekten av diruptioner bestämmas mestadels genom modellering, vilket är vad huvuddelen av denna avhandling handlar om.
Running away and radiating (PLASMA)
European Commission (EC) (EC/H2020/647121), 2015-10-01 -- 2020-09-30.
Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (EUROfusion)
European Commission (EC) (EC/H2020/633053), 2014-01-01 -- 2019-01-01.
Runaway electrons in fusion plasmas
Swedish Research Council (VR) (2022-02862), 2023-01-01 -- 2026-12-31.
Implementation of activities described in the Roadmap to Fusion during Horizon Europe through a joint programme of the members of the EUROfusion consortium
European Commission (EC) (101052200), 2021-01-01 -- 2025-12-31.
Runaway electrons in fusion plasmas
Swedish Research Council (VR) (2018-03911), 2018-12-01 -- 2021-12-31.
Extreme Plasma Flares
Knut and Alice Wallenberg Foundation (2022.0087), 2023-07-01 -- 2028-06-30.
Driving Forces
Sustainable development
Areas of Advance
Energy
Roots
Basic sciences
Subject Categories (SSIF 2025)
Fusion, Plasma and Space Physics
DOI
10.63959/chalmers.dt/5778
ISBN
978-91-8103-321-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5778
Publisher
Chalmers
PJ-salen, Fysikgården 2
Opponent: Dr. Sandor Zoletnik, Fusion Plasma Physics Department, HUN-REN Centre for Energy Research, Hungary