Exploration and discovery of enzymes and non-catalytic proteins targeting microbial α-glucans
Doctoral thesis, 2026

Polysaccharides are everywhere. Many have structural or energy-storage roles, such as the well-known plant polysaccharides cellulose and starch. This thesis focuses on the less studied α-1,3-glucans, which can be found in fungal cell walls and bacterial biofilms fulfilling various functional roles. In fungal cell walls, α-1,3-glucans are known to function as a storage polysaccharide in some species, and as virulence factor in others. In dental plaque, α-1,3-glucans build up the protective structure and provide adhesion to the tooth, contributing to the characteristic stickiness and resilience of biofilms. Because of their structural importance and involvement in pathogenicity, there is interest in the degradation of α‑1,3-glucan. The aim of my thesis studies was to increase the knowledge concerning which enzymes can degrade α‑1,3-glucan (mutan) and mixed-linkage α-1,3/α-1,6-glucan (alternan) and how these enzymes function.

I have explored the two carbohydrate-active enzyme families currently known to contain α‑1,3-glucanase activity: glycoside hydrolase families (GH) 71 and 87. Two GH71 enzymes from the fungus Aspergillus nidulans were studied. Through structural determination coupled with biochemical characterization we elucidated the mechanisms and catalytic amino acids for these enzymes. I also studied a GH87 enzyme from Flavobacterium johnsoniae and discovered that one of its appended domains is a novel carbohydrate-binding module. By binding both mutan and alternan, its presence significantly improves the activity of the enzyme compared to the lone catalytic domain.

I also discovered new sources of mutan- and alternan-degrading enzymes via screening of environmental soil samples to identify microorganisms able to grow on these polymers. Six Streptomyces isolates were chosen for further study, which led to the description of two new species, Streptomyces castrisilvae and Streptomyces glycanivorans. In addition, analysis of the secretome of two of the isolates during growth on mutan and alternan showed that both strains employed several GH87 enzymes, all with different domain architecture, for the degradation of both polysaccharides. Growth on alternan also induced the expression of a gene cluster whose proteins’ concerted actions were shown to facilitate alternan and dextran (α-1,6-glucan) utilization.

Overall, my work contributes to the understanding of carbohydrate-active enzymes and carbohydrate-binding modules targeting microbial α-1,3-glucans.

alpha-glucan

GH87

Carbohydrate-binding module

Glycoside hydrolases

alternan

cazymes

CBM

Proteomics

GH71

mutan

Aspergillus

Fungal cell wall

Dental plaque

carbohydrate-active enzymes

enzymes

alpha-1,3-glucan

Streptomyces

FB
Opponent: Prof. Gustav Vaaje-Kolstad, Faculty of Chemistry, Biotechnology and Food Science, Norweigan University of Life Sciences, Norway

Author

Tove Widén

Chalmers, Life Sciences, Industrial Biotechnology

Streptomyces castrisilvae sp. nov. and Streptomyces glycanivorans sp. nov., novel soil streptomycetes metabolizing mutan and alternan

International Journal of Systematic and Evolutionary Microbiology,;Vol. 74(2024)

Journal article

Widén T, McKee L, Koropatkin N, Larsbrink J. Characterization of an α-glucan-binding module from Flavobacterium johnsoniae as a founding member of carbohydrate-binding module family XXX.

Widén T, Forsberg Z, Shimer L, Eijsink V, Koropatkin N, Larsbrink J. Comparative proteomics and enzymatic analyses of soil Streptomyces growing on mutan and alternan reveals a gene cluster involved in alpha-1,6-glucan degradation.

Upptäckande och utforskning av proteiner för nedbrytning av α-1,3-glukaner

Kolhydrater finns överallt omkring oss. Vissa bidrar till cellers uppbyggnad och struktur, som cellulosa i växter och kitin i insekter. Andra fungerar som energiförvaring, så som stärkelse hos växter och glykogen i djurceller. Det finns en otrolig diversitet av kolhydrater eftersom olika sockerarter kan kopplas ihop på en mängd olika sätt. En typ av kolhydrat som inte är särskilt välstuderad, men likväl viktig, är α-1,3-glukan, en olöslig polysackarid bestående av glukosenheter sammankopplade med α-1,3-bindningar. Denna typ av polysackarid återfinns i svampars cellväggar men även i tandplack där den bidrar till struktur och i vissa fall virulens. För att motverka svampinfektioner och tandplack finns det därför ett intresse i att kunna bryta ned polysackariderna på ett sätt som inte påverkar den drabbade individen negativt. För detta syfte skulle enzymer kunna användas, men kunskapen om α-1,3-glukanaser är bristfällig vilket förhindrar effektiv användning av dem. I denna avhandling utforskar jag funktionen av α-1,3-glukanaser och proteiner som kan binda till α-1,3-glukan. Min forskning bidrar med ny mekanistisk kunskap om hur sådana enzymer och proteiner fungerar samt hur mikroorganismer kan bryta ned α-1,3-glukaner.

Subject Categories (SSIF 2025)

Molecular Biology

Microbiology

Biocatalysis and Enzyme Technology

DOI

10.63959/chalmers.dt/5816

ISBN

978-91-8103-359-5

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5816

Publisher

Chalmers

FB

Opponent: Prof. Gustav Vaaje-Kolstad, Faculty of Chemistry, Biotechnology and Food Science, Norweigan University of Life Sciences, Norway

More information

Latest update

1/27/2026