Determination of the cd-bearing phases in municipal solid waste and Biomass single fly ash particles using SR-mu XRF Spectroscopy
Journal article, 2007

By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-mu XRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.

COMBUSTION

X-RAY FLUORESCENCE

INDIVIDUAL PARTICLES

TOXIC METAL EMISSIONS

MICRO-BEAM SPECTROMETRY

INCINERATION

ELEMENTS

HEAVY-METALS

SPECIATION

BEHAVIOR

Author

Maria Caterina Camerani

Chemical Analysis

Chalmers

Andrea Somogyi

SOLEIL Synchrotron

Bart Vekemans

University of Antwerp

Stuart Ansell

STFC Rutherford Appleton Laboratory

Alexandre S. Simionovici

École Normale Supérieure de Lyon

Britt-Marie Steenari

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Itai Panas

Chalmers, Chemical and Biological Engineering, Environmental Inorganic Chemistry

Analytical Chemistry

0003-2700 (ISSN) 1520-6882 (eISSN)

Vol. 79 17 6496-6506

Subject Categories

Analytical Chemistry

Theoretical Chemistry

Environmental Sciences

DOI

10.1021/ac070206j

More information

Latest update

5/20/2021