Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1─xFeyCo1─yO3─δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4
Journal article, 2008

Solid oxygen-carrier materials for chemical-looping applications have been examined by reduction with CH4 and oxidation with air in a fixed-bed quartz reactor at 900ºC. Four perovskite materials, three metal-oxide materials and four metal-oxide mixtures have been studied. It was found that LaxSr1─xFeO3─δ perovskites provided very high selectivity towards CO/H2 and should be well suited for chemical-looping reforming. Substituting La for Sr was found to increase the oxygen capacity of these materials, but reduced the selectivity towards CO/H2 and the reactivity with CH4. La0.5Sr0.5Fe0.5Co0.5O3─δ was found to be feasible for chemical-looping combustion applications. NiO/MgAl2O4 propagated formation of solid carbon, likely due to the catalytic properties of metallic Ni. Fe2O3/MgAl2O4 had properties that made it interesting both for chemical-looping combustion and chemical-looping reforming. Adding 1% NiO particles to a bed of Fe2O3-particles increased both reactivity with CH4 and selectivity towards CO/H2 for reforming applications. Mn3O4/Mg­ZrO2 was found to be suitable for chemical-looping combustion applications, but it could not be verified that adding NiO produced any positive effects.

Hydrogen

Perovskites

Chemical-Looping Reforming

Synthesis Gas

Chemical-Looping Combustion

Partial Oxidation

Author

Magnus Rydén

Chalmers, Energy and Environment, Energy Technology

Anders Lyngfelt

Chalmers, Energy and Environment, Energy Technology

Tobias Mattisson

Chalmers, Energy and Environment, Energy Technology

De Chen

Norwegian University of Science and Technology (NTNU)

Anders Holmen

Norwegian University of Science and Technology (NTNU)

Erlend Bjørgum

SINTEF Materials and Chemistry

International Journal of Greenhouse Gas Control

1750-5836 (ISSN)

Vol. 2 1 21-36

Subject Categories (SSIF 2011)

Chemical Process Engineering

Other Environmental Engineering

DOI

10.1016/S1750-5836(07)00107-7

More information

Latest update

4/20/2018