A Systematic Approach to Robust Preconditioning for Gradient Based Inverse Scattering Algorithms
Journal article, 2008

This paper presents a systematic approach to robust preconditioning for gradient-based nonlinear inverse scattering algorithms. In particular, one- and two-dimensional inverse problems are considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. A time-domain least-squares formulation is employed and the inversion algorithm is based on a conjugate gradient or quasi-Newton algorithm together with an FDTD-electromagnetic solver. A Fisher information analysis is used to estimate the Hessian of the error functional. A robust preconditioner is then obtained by incorporating a parameter scaling such that the scaled Fisher information has a unit diagonal. By improving the conditioning of the Hessian, the convergence rate of the conjugate gradient or quasi-Newton methods are improved. The preconditioner is robust in the sense that the scaling, i.e. the diagonal Fisher information, is virtually invariant to the numerical resolution and the discretization model that is employed. Numerical examples of image reconstruction are included to illustrate the efficiency of the proposed technique. © 2008 IOP Publishing Ltd.


S. Nordebo

Vaxjo universitet

Andreas Fhager

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

Mats Gustafsson

Lund University

Mikael Persson

Chalmers, Signals and Systems, Signal Processing and Biomedical Engineering

Inverse Problems

0266-5611 (ISSN) 13616420 (eISSN)

Vol. 24 2 025027- 025027

Subject Categories

Medical Laboratory and Measurements Technologies

Probability Theory and Statistics

Signal Processing



More information

Latest update

4/5/2022 7