A model for estimating the value of sampling programs and the optimal number of samples for contaminated soil
Journal article, 2007

A model is presented for estimating the value of information of sampling programs for contaminated soil. The purpose is to calculate the optimal number of samples when the objective is to estimate the mean concentration. A Bayesian risk-cost-benefit decision analysis framework is applied and the approach is design-based. The model explicitly includes sample uncertainty at a complexity level that can be applied to practical contaminated land problems with limited amount of data. Prior information about the contamination level is modelled by probability density functions. The value of information is expressed in monetary terms. The most cost-effective sampling program is the one with the highest expected net value. The model was applied to a contaminated scrap yard in Goteborg, Sweden, contaminated by metals. The optimal number of samples was determined to be in the range of 16-18 for a remediation unit of 100 m(2). Sensitivity analysis indicates that the perspective of the decision-maker is important, and that the cost of failure and the future land use are the most important factors to consider. The model can also be applied for other sampling problems, for example, sampling and testing of wastes to meet landfill waste acceptance procedures.

FRAMEWORK

data worth

soil

HYDROGEOLOGICAL DECISION-ANALYSIS

AQUIFER REMEDIATION DESIGN

INFORMATION

cost-effectiveness

contamination

WORTH

ENVIRONMENTAL REMEDIATION

STRATEGIES

Bayesian analysis

value of information

Author

Pär-Erik Back

FRIST competence centre

Chalmers, Civil and Environmental Engineering

Environmental Geology

0943-0105 (ISSN)

Vol. 52 3 573-585

Subject Categories

Civil Engineering

DOI

10.1007/s00254-006-0488-6

More information

Created

10/8/2017