Electron Spectroscopic Studies of Homogenous (GaMn)As layers
Paper in proceeding, 2012

By incorporating magnetism into semiconductors, it may possibly be viable to enhance the functionality of materials. An exceptionally important material in this context is GaAs, which can be doped with Mn atoms. (GaMn)As has fascinated research community as a promising candidate for spintronic application. It is quite appealing due to both its compatibility with existing HI-V technology and great progress in improving its magnetic properties. Being fabricated by low temperature molecular beam epitaxy (LT-MBE), due to thermal instability at elevated temperatures, the material contains a high density of various defects compensating Mn acceptors. It is a well-established fact that the ferromagnetic state of (GaMn)As can be stabilized via post growth annealing. Nevertheless, in general, the annealed (GaMn)As layers do not remain useful for further epitaxial overgrowth that might be included in multilayer structure. We present a summary of our investigations regarding the synchrotron-based characterization of (GaMn)As layers grown via molecular beam epitaxy carried out at the Swedish National Facility of Synchrotron Radiation-the MAX-lab aiming at the reduction of the density of Mn interstitial and increase in the content of Mn.


Synchrotron-based characterization

(GaMn) As


Diluted magnetic semiconductors


Intikhab Ulfat

Chalmers, Applied Physics, Solid State Physics

Johan Adell

Chalmers, Applied Physics, Solid State Physics

P. Pal

J. Sadowski

Lars Ilver

Chalmers, Applied Physics, Solid State Physics

Janusz Kanski

Chalmers, Applied Physics, Solid State Physics

Advanced Materials Research

1022-6680 (ISSN) 1662-8985 (eISSN)

Vol. 463-464 380-384
978-3-03785-363-4 (ISBN)

Subject Categories

Physical Sciences





More information