A toolbox for provably optimal multistage strict group testing strategies
Paper in proceedings, 2013

Group testing is the problem of identifying up to d defectives in a set of n elements by testing subsets for the presence of defectives. Let t(n,d,s) be the optimal number of tests needed by an s-stage strategy in the strict group testing model where the searcher must also verify that no more than d defectives are present. We develop combinatorial tools that are powerful enough to compute many exact t(n,d,s) values. This extends the work of Huang and Hwang (2001) for s=1 to multistage strategies. The latter are interesting since it is known that asymptotically nearly optimal group testing is possible already in s=2 stages. Besides other tools we generalize d-disjunct matrices to any candidate hypergraphs, which enables us to express optimal test numbers for s=2 as chromatic numbers of certain conflict graphs. As a proof of concept we determine almost all test numbers for n up to 10, and t(n,2,2) for some larger n.


group testing

lower bounds

chromatic number

disjunct matrix


Peter Damaschke

Chalmers, Computer Science and Engineering (Chalmers), Computing Science (Chalmers)

Muhammad Azam Sheikh

Chalmers, Computer Science and Engineering (Chalmers), Computing Science (Chalmers)

19th International Computing and Combinatorics Conference COCOON 2013, Lecture Notes in Computer Science

Vol. 7936 446-457
978-3-642-38767-8 (ISBN)


Basic sciences

Areas of Advance

Life Science Engineering (2010-2018)

Subject Categories

Discrete Mathematics



More information