Spatial characterization of a multifunctional pipette for drug delivery in hippocampal brain slices
Journal article, 2015

Background: Among the various fluidic control technologies, microfluidic devices are becoming powerful tools for pharmacological studies using brain slices, since these devices overcome traditional limitations of conventional submerged slice chambers, leading to better spatiotemporal control over delivery of drugs to specific regions in the slices. However, microfluidic devices are not yet fully optimized for such studies. New method: We have recently developed a multifunctional pipette (MFP), a free standing hydrodynamically confined microfluidic device, which provides improved spatiotemporal control over drug delivery to biological tissues. Results: We demonstrate herein the ability of the MFP to selectively perfuse one dendritic layer in the CA1 region of hippocampus with CNQX, an AMPA receptor antagonist, while not affecting the other layers in this region. Our experiments also illustrate the essential role of hydrodynamic confinement in sharpening the spatial selectivity in brain slice experiments. Concentration-response measurements revealed that the ability of the MFP to control local drug concentration is comparable with that of whole slice perfusion, while in comparison the required amounts of active compounds can be reduced by several orders of magnitude. Comparison with existing method: The multifunctional pipette is applied with an angle, which, compared to other hydrodynamically confined microfluidic devices, provides more accessible space for other probing and imaging techniques. Conclusions: Using the MFP it will be possible to study selected regions of brain slices, integrated with various imaging and probing techniques, without affecting the other parts of the slices.

Brain slices

Glutamate

Hippocampus

Perfusion

Multifunctional pipette

Microfluidic technology

Electrophysiological techniques

Author

Aikeremu Ahemaiti

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Physical Chemistry

Holger Wigström

University of Gothenburg

Alar Ainla

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Physical Chemistry

Gavin Jeffries

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Physical Chemistry

Owe Orwar

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Physical Chemistry

Aldo Jesorka

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry, Physical Chemistry

Kent Eric Jardemark

Karolinska Institutet

Journal of Neuroscience Methods

0165-0270 (ISSN)

Vol. 241 132-136

Subject Categories

Physical Chemistry

Neurology

DOI

10.1016/j.jneumeth.2014.12.017

PubMed

25554414

More information

Latest update

2/21/2018