Numerical calculation of ion runaway distributions
Journal article, 2015

Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fields required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.

Author

Ola Embréus

Chalmers, Applied Physics, Nuclear Engineering

Sarah Newton

Chalmers, Applied Physics, Nuclear Engineering

Adam Stahl

Chalmers, Applied Physics, Nuclear Engineering

Eero Hirvijoki

Chalmers, Applied Physics, Nuclear Engineering

Tünde Fülöp

Chalmers, Applied Physics, Nuclear Engineering

Physics of Plasmas

1070-664X (ISSN) 1089-7674 (eISSN)

Vol. 22 5 052122- 052122

Driving Forces

Sustainable development

Areas of Advance

Energy

Roots

Basic sciences

Subject Categories

Fusion, Plasma and Space Physics

DOI

10.1063/1.4921661

More information

Created

10/7/2017