A study on data de-pseudonymization in the smart grid
Paper in proceeding, 2015

In the transition to the smart grid, the electricity networks are becoming more data intensive with more data producing devices deployed, increasing both the opportunities and challenges in how the collected data are used. For example, in the Advanced Metering Infrastructure (AMI) the devices and their corresponding data give more information about the operational parameters of the environment but also details about the habits of the people living in the houses monitored by smart meters. Different anonymization techniques have been proposed to minimize privacy concerns, among them the use of pseudonyms. In this work we return to the question of the effectiveness of pseudonyms, by investigating how a previously reported methodology for de-pseudonymization performs given a more realistic and larger dataset than was previously used. We also propose and compare the results with our own simpler de-pseudonymization methodology. Our results indicate, not surprisingly, that large realistic datasets are very important to properly understand how an experimental method performs. Results based on small datasets run the risk of not being generalizable. In particular, we show that the number of re-identified households by breaking pseudonyms is dependent on the size of the dataset and the period where the pseudonyms are constant and not changed. In the setting of the smart grid, results will even vary based on the season when the dataset was captured. Knowing that relative simple changes in the data collection procedure may significantly increase the resistance to de-anonymization attacks will help future AMI deployments.

Author

Valentin Tudor

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Magnus Almgren

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

Marina Papatriantafilou

Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)

8th European Workshop on System Security, EuroSec 2015; Bordeaux, France

a2
978-1-4503-3479-2 (ISBN)

Subject Categories (SSIF 2011)

Computer and Information Science

Areas of Advance

Energy

DOI

10.1145/2751323.2751325

ISBN

978-1-4503-3479-2

More information

Created

10/7/2017