Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells
Journal article, 2016

We report on the fabrication of disordered nanostructures by combining colloidal lithography and silicon etching. We show good control of the short-range ordered colloidal pattern for a wide range of bead sizes from 170 to 850 nm. The inter-particle spacing follows a Gaussian distribution with the average distance between two neighboring beads (center to center) being approximately twice their diameter, thus enabling the nanopatterning with dimensions relevant to the light wavelength scale. The disordered nanostructures result in a lower integrated reflectance (8.1%) than state-of-the-art random pyramid texturing (11.7%) when fabricated on 700 mu m thick wafers. When integrated in a 1.1 mu m thin crystalline silicon slab, the absorption is enhanced from 24.0% up to 64.3%. The broadening of resonant modes present for the disordered nanopattern offers a more broadband light confinement compared to a periodic nanopattern. Owing to its simplicity, versatility and the degrees of freedom it offers, this potentially low-cost bottom-up nanopatterning process opens perspectives towards the integration of advanced light-trapping schemes in thin solar cells.


C. Trompoukis

KU Leuven

Ghent university

Interuniversity Micro-Electronics Center at Leuven

Ines Massiot

Chalmers, Physics, Bionanophotonics

V. Depauw

Interuniversity Micro-Electronics Center at Leuven

O. El Daif

Interuniversity Micro-Electronics Center at Leuven

Qatar Environment and Energy Research Institute

K. Lee

Obducat Technologies Ab

Alexander Dmitriev

Chalmers, Physics, Bionanophotonics

I. Gordon

Interuniversity Micro-Electronics Center at Leuven

R. Mertens

Interuniversity Micro-Electronics Center at Leuven

J. Poortmans

Interuniversity Micro-Electronics Center at Leuven

KU Leuven

Universiteit Hasselt

Optics Express

1094-4087 (ISSN)

Vol. 24 2 A191-A201

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS)

European Commission (EC) (EC/FP7/309127), 2012-11-01 -- 2015-10-31.

Subject Categories

Atom and Molecular Physics and Optics



More information

Latest update

1/5/2023 1