Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line
Journal article, 2016

Quantum limited amplifiers are sought after for a wide range of applications within quantum technologies and sensing. One promising candidate is the travelling wave parametric amplifier which exploits the non-linear kinetic inductance of a superconducting transmission line. This type of microwave amplifier promises to deliver a high gain, a quantum limited noise performance over several GHz bandwidth, and a high dynamic range. However, practical realizations of this type of device have so far been limited by fabrication defects, since the length of the superconducting transmission line required for achieving substantial parametric gain is on the order of similar to 1m. Here, we report on a design for a microwave traveling wave amplifier based on a slow propagation line comprising a central strip with high kinetic inductance and quasi-fractal line-to-ground capacitors. Due to an enhanced per unit length inductance (73 nH cm(-1)) and capacitance (15 pF cm(-1)), the line has a microwave propagation velocity as low as 9.8 x 10(8) cm s(-1). This translates into parametric gain up to 0.5 dB cm(-1) and a total gain of 6 dB for just a similar to 10 cm long transmission line. Moreover, the flexibility of the presented design allows balancing the line inductance and capacitance in order to keep the characteristic impedance close to 50 Omega and to suppress standing waves, both factors being essential in order to implement a practical parametric amplifier in the microwave domain.

Author

Astghik Adamyan

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Sebastian Erik de Graaf

National Physical Laboratory (NPL)

Sergey Kubatkin

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Andrey Danilov

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Journal of Applied Physics

0021-8979 (ISSN) 1089-7550 (eISSN)

Vol. 119 8 083901

Areas of Advance

Nanoscience and Nanotechnology

Subject Categories

Nano Technology

Condensed Matter Physics

DOI

10.1063/1.4942362

More information

Latest update

4/5/2022 6