Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism
Journal article, 2016

This work provides a detailed investigation of the measured in-plane field-swept homodyne-detected ferromagnetic resonance (FMR) spectra of an extended Co/Cu/NiFe pseudo-spin-valve stack using a nanocontact (NC) geometry. The magnetodynamics are generated by a pulse-modulated microwave current, and the resulting rectified dc mixing voltage, which appears across the NC at resonance, is detected using a lock-in amplifier. Most notably, we find that the measured spectra of the NiFe layer are composite in nature and highly asymmetric, consistent with the broadband excitation of multiple modes. Additionally, the data must be fit with two Lorentzian functions in order to extract a reasonable value for the Gilbert damping of the NiFe. Aided by micromagnetic simulations, we conclude that (i) for in-plane fields the rf Oersted field in the vicinity of the NC plays the dominant role in generating the observed spectra, (ii) in addition to the FMR mode, exchange-dominated spin waves are also generated, and (iii) the NC diameter sets the mean wave vector of the exchange-dominated spin wave, in good agreement with the dispersion relation.

Author

M. Fazlali

University of Gothenburg

Mykola Dvornik

University of Gothenburg

Ezio Iacocca

Chalmers, Physics, Theoretical Physics

Philipp Dürrenfeld

University of Gothenburg

Mohammad Haidar

University of Gothenburg

Johan Åkerman

University of Gothenburg

Randy K. Dumas

University of Gothenburg

Physical Review B: covering condensed matter and materials physics

2469-9969 (eISSN)

Vol. 93 134427-

Subject Categories

Nano Technology

Other Electrical Engineering, Electronic Engineering, Information Engineering

Condensed Matter Physics

DOI

10.1103/PhysRevB.93.134427

More information

Created

10/7/2017