Implant stability and bone remodeling up to 84 days of implantation with an initial static strain. An in vivo and theoretical investigation
Journal article, 2016

ObjectivesWhen implants are inserted, the initial implant stability is dependent on the mechanical stability. To increase the initial stability, it was hypothesized that bone condensation implants will enhance the mechanical stability initially and that the moderately rough surface will further contribute to the secondary stability by enhanced osseointegration. It was further hypothesized that as the healing progresses the difference in removal torque will diminish. In addition, a 3D model was developed to simulate the interfacial shear strength. This was converted to a theoretical removal torque that was compared to the removal torque obtained invivo. Material and methodsCondensation implants, inducing bone strains of 0.015, were installed into the left tibia of 24 rabbits. Non-condensation implants were installed into the right tibia. All implants had a moderately rough surface. The implants had an implantation time of 7, 28, or 84days before the removal torque was measured. The interfacial shear strength at different healing time was estimated by the means of finite element method. ResultsAt 7days of healing, the condensation implant had an increased removal torque compared to the non-bone-condensation implant. At 28 and 84days of healing, there was no difference in removal torque. The simulated interfacial shear strength ratios of bone condensation implants at different implantation time were in line with the invivo data. ConclusionsModerately rough implants that initially induce bone strain during installation have increased stability during the early healing period. In addition, the finite element method may be used to evaluate differences in interlocking capacity.

bone condensation

osseointegration

static strain

surface

remodeling

in vivo

implant stability

Author

A. Halldin

Malmö university

DENTSPLY Implants

Y. Jinno

Malmö university

S. Galli

Malmö university

Mats Ander

Chalmers, Applied Mechanics, Material and Computational Mechanics

M. Jacobsson

Malmö university

Ryo Jimbo

Malmö university

Clinical Oral Implants Research

0905-7161 (ISSN) 1600-0501 (eISSN)

Vol. 27 10 1310-1316

Subject Categories

Structural Biology

DOI

10.1111/clr.12748

More information

Latest update

2/5/2021 1