Generalized trigonometric solutions of the classical Yang-Baxter equation
Paper in proceedings, 1998

We consider skew-symmetric solutions of the CYBE of the form ut/upsilon-u + p(u, upsilon), where t epsilon g(x2) is the Casimir element and p(u,upsilon) is a polynomial with coefficients in g(x2) If p(u,upsilon) = const then substituting upsilon/u= e(x) we obtain a trigonometric solution t/1-e(1) + Const in the sense of Ref. 1. We prove that there exists a gauge transformation reducing the polynomial part p(u,upsilon) to a polynomial of degree less than or equal to 1 in u and upsilon. A non-trivial example of a generalized trigonometric solution is constructed.

Author

Alexander Stolin

Department of Mathematics

University of Gothenburg

Group22: Proceedings of the XXII International Colloquium in Group Theoretical Methods in Physics

438-442

Subject Categories

Physical Sciences

ISBN

1-57146-054-3

More information

Created

10/8/2017