Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts
Journal article, 2018
hierarchical regulation
high-throughput proteomics
metabolic control analysis
metabolism
enzyme abundance
machine learning
genotype-phenotype problem
multi-omics
Author
Aleksej Zelezniak
The Francis Crick Institute
University of Cambridge
Royal Institute of Technology (KTH)
Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology
Jakob Vowinckel
Biognosys AG
University of Cambridge
Floriana Capuano
University of Cambridge
Christoph B. Messner
The Francis Crick Institute
Vadim Demichev
The Francis Crick Institute
University of Cambridge
Nicole Polowsky
University of Cambridge
Michael Mülleder
University of Cambridge
The Francis Crick Institute
Stephan Kamrad
University College London (UCL)
The Francis Crick Institute
Bernd Klaus
European Molecular Biology Laboratory
M. A. Keller
Medical University of Innsbruck
University of Cambridge
M. Ralser
Charité University Medicine Berlin
The Francis Crick Institute
University of Cambridge
Cell Systems
24054712 (ISSN) 24054720 (eISSN)
Vol. 7 3 269-283Subject Categories (SSIF 2011)
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Bioinformatics and Systems Biology
Genetics
DOI
10.1016/j.cels.2018.08.001
PubMed
30195436