A Simple Method for Robust Vehicular Communication with Multiple Nonideal Antennas
Paper in proceeding, 2018

For critical vehicular communication services, such as traffic safety and traffic efficiency, it is advisable to design systems with robustness as the main criteria, possibly at the price of reduced peak performance and efficiency. We describe a simple, low-cost method for combining the output of L nonideal (i.e., nonisotropic) antennas to the input signal to a single-port receiver with the aim to guarantee robustness, i.e., to minimize the probability that K consecutive packets arriving from the worst-case angle-of-arrival are decoded incorrectly. To minimize complexity, the combining network does not estimate or use channel state information (complex channel gains, noise levels, etc.). The combining network consists of L-1 analog phase shifters whose phases are affine functions of time. For a general L and the case when the packet error probability decays exponentially with the received SNR, the optimum slopes of the affine functions can be computed by solving an optimization problem that depends on the antenna far field functions. We provide an analytical solution for the special case of = 2 antennas, which turns out to be independent of the antenna patterns. In an experimental setup consisting of two monopole antennas mounted on the roof of a Volvo XC90, the proposed combining method is shown to give significant performance gains compared to using just one of the antennas.


nonisotropic antennas

vehicular communications

analog combining network

burst error probability


Keerthi Nagalapur

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Erik Ström

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Fredrik Brännström

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Jan Carlsson

Provinn AB

Kristian Karlsson

RISE Research Institutes of Sweden

2018 International Conference on Microwaves for Intelligent Mobility (ICMIM2018)
München, Germany,

Areas of Advance

Information and Communication Technology


Driving Forces

Sustainable development

Subject Categories


Communication Systems

Signal Processing





More information

Latest update