Future CO2 removal from pulp mills - Process integration consequences
Journal article, 2007

Earlier work has shown that capturing the CO2 from flue gases in the recovery boiler at a pulp mill can be a cost effective way of reducing mill CO2 emissions. However, the CO2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO2 is investigated. The reduction is achieved using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the waste heat from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO2. With tough CO2 reduction targets and corresponding high CO2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2.

CO2 capture

Chemical absorption

Process integration

CO2 balances

Pulp and paper


Erik Hektor

Industrial Energy Systems and Technologies

Thore Berntsson

Industrial Energy Systems and Technologies

Energy Conversion and Management

0196-8904 (ISSN)

Vol. 48 11 3025-3033

Subject Categories

Energy Engineering



More information