Toward Real Chemical Accuracy on Current Quantum Hardware Through the Transcorrelated Method
Journal article, 2024

Quantum computing is emerging as a new computational paradigm with the potential to transform several research fields including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and connectivity) hamper the implementation of most quantum algorithms and call for more noise-resilient solutions. We propose an explicitly correlated Ansatz based on the transcorrelated (TC) approach to target these major roadblocks directly. This method transfers, without any approximation, correlations from the wave function directly into the Hamiltonian, thus reducing the resources needed to achieve accurate results with noisy quantum devices. We show that the TC approach allows for shallower circuits and improves the convergence toward the complete basis set limit, providing energies within chemical accuracy to experiment with smaller basis sets and, thus, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using two and four qubits, respectively. To demonstrate our approach’s current and near-term potential, we perform hardware experiments, where our results confirm that the TC method paves the way toward accurate quantum chemistry calculations already on today’s quantum hardware.

Author

Werner Barucha-Dobrautz

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Igor O. Sokolov

IBM Research

Ke Liao

Max Planck Society

Pablo López Ríos

Max Planck Society

Martin Rahm

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Ali Alavi

University of Cambridge

Max Planck Society

Ivano Tavernelli

IBM Research

Journal of Chemical Theory and Computation

1549-9618 (ISSN) 1549-9626 (eISSN)

Vol. 20 10 4146-4160

QC-SQUARED

European Commission (EC) (EC/HE/101062864), 2022-01-07 -- 2025-06-30.

Subject Categories

Other Physics Topics

Theoretical Chemistry

Condensed Matter Physics

DOI

10.1021/acs.jctc.4c00070

PubMed

38723159

More information

Latest update

6/15/2024