A combined nanoplasmonic and electrodeless quartz crystal microbalance setup
Artikel i vetenskaplig tidskrift, 2009

We have developed an instrument combining localized surface plasmon resonance (LSPR) sensing with electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D). The two techniques can be run simultaneously, on the same sensor surface, and with the same time resolution and sensitivity as for the individual techniques. The electrodeless QCM eliminates the need to fabricate electrodes on the quartz crystal and gives a large flexibility in choosing the surface structure and coating for both QCM-D and LSPR. The performance is demonstrated for liquid phase measurements of lipid bilayer formation and biorecognition events, and for gas phase measurements of hydrogen uptake/release by palladium nanoparticles. Advantages of using the combined equipment for biomolecular adsorption studies include synchronized information about structural transformations and extraction of molecular (dry) mass and degree of hydration of the adlayer, which cannot be obtained with the individual techniques. In hydrogen storage studies the combined equipment, allows for synchronized measurements of uptake/release kinetics and quantification of stored hydrogen amounts in nanoparticles and films at practically interesting hydrogen pressures and temperatures.

hydrogen storage

lipid bilayer


nanoparticle plasmon



Elin Maria Kristina Larsson

Chalmers, Teknisk fysik, Kemisk fysik

Malin Edvardsson

Chalmers, Teknisk fysik, Biologisk fysik

Christoph Langhammer

Chalmers, Teknisk fysik, Kemisk fysik

Igor Zoric

Chalmers, Teknisk fysik, Kemisk fysik

Bengt Herbert Kasemo

Chalmers, Teknisk fysik, Kemisk fysik

Review of Scientific Instruments

0034-6748 (ISSN)

Vol. 80 12 125105-


Atom- och molekylfysik och optik



Mer information