On Fully Discrete Schemes for the Fermi Pencil-Beam Equations.
Artikel i vetenskaplig tidskrift, 2002

We consider standard Galerkin and streamline diffusion finite element methods in the two dimensional, bounded transversal domain combined with backward Euler, Crank-Nicolson and discontinuous Galerkin methods in the penetration variable. Assuming smooth solutions in the Sobolev space $H^{k+1}$ of functions with their partial derivatives up to order $k+1$ in $L_2$, we derive optimal, a priori, semi-discrete methods of order $O(h^k)$ and $O(h^{k+1/2})$, respectively. Numerical implementations are presented

Semi-streamline-diffusion

Standard Galerkin

Fermi equation

Pencil beam

Fully discrete scheme

Convergence rates

Författare

Mohammad Asadzadeh

Chalmers, Institutionen för matematik

Göteborgs universitet

Alexandros Sopasakis

Chalmers, Institutionen för matematik

Göteborgs universitet

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 191 4641-4659

Ämneskategorier

Beräkningsmatematik