The asymptotic behaviour in Schwarzschild time of Vlasov matter in spherically symmetric gravitational collapse
Artikel i vetenskaplig tidskrift, 2010

Given a static Schwarzschild spacetime of ADM mass M, it is well known that no ingoing causal geodesic starting in the outer domain r > 2M will cross the event horizon r = 2M in finite Schwarzschild time. We show that in gravitational collapse of Vlasov matter this behaviour can be very different. We construct initial data for which a black hole forms and all matter crosses the event horizon as Schwarzschild time goes to infinity, and show that this is a necessary condition for geodesic completeness of the event horizon. In addition to a careful analysis of the asymptotic behaviour of the matter characteristics our proof requires a new argument for global existence of solutions to the spherically symmetric Einstein–Vlasov system in an outer domain, since our initial data have non-compact support in the radial momentum variable and previous methods break down.

Författare

Håkan Andreasson

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Gerhard Rein

Universität Bayreuth

Mathematical Proceedings of the Cambridge Philosophical Society

0305-0041 (ISSN) 1469-8064 (eISSN)

Vol. 149 1 173-188

Ämneskategorier

Beräkningsmatematik

Astronomi, astrofysik och kosmologi

Matematisk analys

DOI

10.1017/S0305004109990454

Mer information

Skapat

2017-10-07