Degenerate $p$-Laplacian Operators and Hardy Type Inequalities on H-Type Groups
Artikel i vetenskaplig tidskrift, 2010

Let G  be a step-two nilpotent group of H-type with Lie algebra G=V⊕t  . We define a class of vector fields X={X j }  on G  depending on a real parameter k≥1  , and we consider the corresponding p  -Laplacian operator L p,k u=div X (|∇ X u| p−2 ∇ X u)  . For k=1  the vector fields X={X j }  are the left invariant vector fields corresponding to an orthonormal basis of V  ; for G  being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator L p,k   and as an application, we get a Hardy type inequality associated with X  .

Författare

Y. Y. Jin

Zhejiang University of Technology

Genkai Zhang

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Canadian Journal of Mathematics

0008-414X (ISSN) 1496-4279 (eISSN)

Vol. 62 5 1116-1130

Ämneskategorier

Matematik

DOI

10.4153/CJM-2010-033-9