Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells
Artikel i vetenskaplig tidskrift, 2010

A series of donor-pi-acceptor dyes with different electron-withdrawing groups were designed and synthesized for p-type dye-sensitized Solar cells. The modification of dye structures shows significant influence on the photophysical, electrochemical, and photovoltaic performance of the dyes. DSSCs based on these dyes show maximum 63% and minimum 6% of incident monochromatic photon-to-current conversion efficiencies. The two dyes with the highest (P1) and lowest (P3) efficiencies were Studied by femtosecond transient absorption spectroscopy, which shows a fast injection rate of more than (250 fs)(-1) for both dyes. Such fast injection corresponds to more than 90% injection efficiency. The photoinduced absorption Spectroscopy Study of sensitized NiO films in the presence of electrolyte showed poor regeneration of 113 due to all insufficient driving force. This, together with aggregation of the dye on the NiO film, explained the poor solar cell performance.

CURRENT CONVERSION EFFICIENCY

CHARGE-TRANSFER

NANOSTRUCTURED

DENSITY

FILMS

OPEN-CIRCUIT VOLTAGE

NIO

DYNAMICS

PHOTOCATHODE

ELECTRON-TRANSFER

SPECTROELECTROCHEMISTRY

Författare

P. Qin

The Royal Institute of Technology (KTH)

Joanna Wiberg

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

E. A. Gibson

Uppsala Universitet

M. Linder

The Royal Institute of Technology (KTH)

L. Li

The Royal Institute of Technology (KTH)

T. Brinck

Uppsala Universitet

A. Hagfeldt

Dalian University of Technology

Bo Albinsson

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

L. C. Sun

Dalian University of Technology

The Royal Institute of Technology (KTH)

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 114 4738-4748

Ämneskategorier

Fysikalisk kemi

DOI

10.1021/jp911091n