Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D
Artikel i vetenskaplig tidskrift, 2010

A globally convergent numerical method for a 3-Dimensional Coefficient Inverse Problem for a hyperbolic equation is presented. A new globally convergent theorem is proven. It is shown that this technique provides a good first guess for the Finite Element Adaptive method (adaptivity) method. This leads to a synthesis of both approaches. Numerical results are presented.

Two-stage numerical procedure

RECONSTRUCTION

globally convergent numerical method

SCATTERING

adaptive finite element method

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

M. V. Klibanov

The University of North Carolina System

Publicerad i

Journal of Inverse and Ill-Posed Problems

0928-0219 (ISSN) 1569-3945 (eISSN)

Vol. 18 Nummer/häfte 1 s. 85-132

Kategorisering

Ämneskategorier (SSIF 2011)

Matematik

Identifikatorer

DOI

10.1515/JIIP.2010.003

Mer information

Senast uppdaterat

2025-04-04