Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry
Artikel i vetenskaplig tidskrift, 2010

Indirect nanoplasmonic sensing is a novel experimental platform for measurements of thermodynamics and kinetics in/on nanomaterials and thin films. It features simple experimental setup, high sensitivity, small sample amounts, high temporal resolution ( < 10 -3 s), operating conditions from UHV to high pressure, wide temperature range, and applicability to any nano- or thin film material. The method utilizes two-dimensional arrangements of nanoplasmonic Au sensor-nanoparticles coated with a thin dielectric spacer layer onto which the sample material is deposited. The measured signal is spectral shifts of the Au-sensor localized plasmons, induced by processes in/on the sample material. Here, the method is applied to three systems exhibiting nanosize effects, (i) the glass transition of confined polymers, (ii) catalytic light-off on Pd nanocatalysts, and (iii) thermodynamics and kinetics of hydrogen uptake/release in Pd nanoparticles < 5 nm. In (i) and (iii), dielectric changes in the sample are detected, while (ii) demonstrates a novel optical nanocalorimetry method. © 2010 American Chemical Society.

Indirect nanoplasmonic sensing

optical nanocalorimetry

localized surface plasmon resonance

polymer glass transition

hydrogen storage



Christoph Langhammer

Chalmers, Teknisk fysik, Kemisk fysik

Elin Maria Kristina Larsson

Kompetenscentrum katalys (KCK)

Chalmers, Teknisk fysik, Kemisk fysik

Bengt Herbert Kasemo

Kompetenscentrum katalys (KCK)

Chalmers, Teknisk fysik, Kemisk fysik

Igor Zoric

Chalmers, Teknisk fysik, Kemisk fysik

Nano Letters

1530-6984 (ISSN) 1530-6992 (eISSN)

Vol. 10 3529-3538


Atom- och molekylfysik och optik