Low-temperature CO oxidation over a Pt/Al2O3 monolith catalyst investigated by step-response experiments and simulations
Artikel i vetenskaplig tidskrift, 2004

The ignition–extinction processes for CO oxidation over a Pt/Al2O3 monolith catalyst have been studied by flow-reactor experiments and simulations. The study was performed by stepwise changes of the inlet O2 concentration ranging 0–20 vol% while the CO concentration and the inlet gas temperature were kept constant at 1.0 vol% and 423 K, respectively. Several features observed experimentally are qualitatively simulated with our model: (i) the ignition of the CO oxidation demands 8.0vol% O2 (ii) corresponding to a catalyst ignition temperature of 433 K (due to the exothermicity of the reaction) and (iii) occurs in the rear part of the monolith where (iv) a local reaction zone is formed which (v) moves towards the reactor inlet as a function of time on stream. Additionally, the simulations show first order kinetic phase transitions, i.e. rapid adsorbate concentration changes, where the catalyst surface is predominantly CO covered in the low reactive state and almost completely oxygen covered in the high reactive state. For the ignition process the kinetic phase transition occurs after the actual catalytic ignition. However, the extinction process is more difficult to simulate dynamically without changing the model parameters for O2 adsorption in the low and high reactive state, respectively. The influence of diffusion limitations and the role of formation of a less reactive Pt state under oxidising conditions is discussed.

step-response experiment




low-temperature activity

catalytic ignition

mean-field modelling

CO oxidation

catalytic extinction



Per-Anders Carlsson

Kompetenscentrum katalys

Chalmers, Kemi- och bioteknik, Kemisk reaktionsteknik

Magnus Skoglundh

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Kompetenscentrum katalys

Peter Thormählen

Chalmers, Teknisk fysik, Kemisk fysik

Kompetenscentrum katalys

Bengt Andersson

Kompetenscentrum katalys

Chalmers, Kemi- och bioteknik, Kemisk reaktionsteknik

Topics in Catalysis

1022-5528 (ISSN) 1572-9028 (eISSN)

Vol. 30/31 1-4 375-381


Hållbar utveckling


Nanovetenskap och nanoteknik





Kemiska processer



Mer information

Senast uppdaterat