A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem
Artikel i vetenskaplig tidskrift, 2010

This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.

reconstruction

Författare

Mohammad Asadzadeh

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Larisa Beilina

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Inverse Problems

0266-5611 (ISSN)

Vol. 26 11 Art. no. 115007-

Ämneskategorier

Beräkningsmatematik

DOI

10.1088/0266-5611/26/11/115007