On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue.
Artikel i vetenskaplig tidskrift, 2010

The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (DG) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ω̃in R3 with a polygonal convex cross-section ω The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.


Mohammad Asadzadeh

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

L. Thevenot

University of Besan con

Nuovo Cimento della Societa Italiana di Fisica C

1124-1896 (ISSN)

Vol. 33 21-29




Grundläggande vetenskaper