On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue.
Artikel i vetenskaplig tidskrift, 2010

The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (DG) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ω̃in R3 with a polygonal convex cross-section ω The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

Författare

Mohammad Asadzadeh

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

L. Thevenot

Université de Franche-Comté

Nuovo Cimento della Societa Italiana di Fisica C

1124-1896 (ISSN)

Vol. 33 1 21-29

Ämneskategorier

Beräkningsmatematik

Fundament

Grundläggande vetenskaper

DOI

10.1393/ncc/i2010-10566-4

Mer information

Senast uppdaterat

2021-01-15