RSS-based sensor localization with unknown transmit power
Paper i proceeding, 2011

Received signal strength (RSS)-based single source localization when there is not a prior knowledge about the transmit power of the source is investigated. Because of nonconvex behavior of maximum likelihood (ML) estimator, convoluted computations are required to achieve its global minimum. Therefore, we propose a novel semidefinite programming (SDP) approach by approximating ML problem to a convex optimization problem which can be solved very efficiently. Computer simulations show that our proposed SDP has a remarkable performance very close to ML estimator. Linearizing RSS model, we also derive the partly novel least squares (LS) and weighted total least squares (WTLS) algorithms for this problem. Simulations illustrate that WTLS improves the performance of LS considerably.

Författare

Sayed Reza Monir Vaghefi

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Mohammad Reza Gholami

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Erik Ström

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

15206149 (ISSN)

2480-2483 5946987
978-145770539-7 (ISBN)

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Signalbehandling

DOI

10.1109/ICASSP.2011.5946987

ISBN

978-145770539-7

Mer information

Skapat

2017-10-08