Spatial approximation of stochastic convolutions
Artikel i vetenskaplig tidskrift, 2011

We study linear stochastic evolution partial differential equations driven by additive noise. We present a general and flexible framework for representing the infinite dimensional Wiener process which is driving the equation. Since the eigenfunctions and eigenvalues of the covariance operator of the process are usually not available for computations, we propose an expansion in an arbitrary frame. We show how to obtain error estimates when the truncated expansion is used in the equation. For the stochastic heat and wave equations we combine the truncated expansion with a standard finite element method and derive a priori bounds for the mean square error. Specializing the frame to biorthogonal wavelets in one variable, we show how the hierarchical structure, support and cancellation properties of the primal and dual bases lead to near sparsity and can be used to simplify the simulation of the noise and its update when new terms are added to the expansion.

Error estimate

Finite element

Wiener process

Wavelet

Stochastic heat equation

Stochastic wave equation

Additive noise

Författare

Mihaly Kovacs

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Stig Larsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Fredrik Lindgren

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Journal of Computational and Applied Mathematics

0377-0427 (ISSN)

Vol. 235 12 3554-3570

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.cam.2011.02.010

Mer information

Skapat

2017-10-07